Skip to content

Commit 02f6b54

Browse files
committed
Merge branch 'master' of https://github.com/MicrosoftDocs/azure-docs-pr into update-perms-howto-guides
2 parents f3b94f1 + 21f22fd commit 02f6b54

11 files changed

+71
-86
lines changed

.openpublishing.publish.config.json

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -260,6 +260,12 @@
260260
"branch": "master",
261261
"branch_mapping": {}
262262
},
263+
{
264+
"path_to_root": "aml-sdk-samples",
265+
"url": "https://github.com/Azure/MachineLearningNotebooks",
266+
"branch": "sdk-codetest",
267+
"branch_mapping": {}
268+
},
263269
{
264270
"path_to_root": "cognitive-services-vision-csharp-sdk-quickstarts",
265271
"url": "https://github.com/Azure-Samples/cognitive-services-vision-csharp-sdk-quickstarts",

articles/avere-vfxt/avere-vfxt-deploy.md

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -86,6 +86,7 @@ Under **TERMS AND CONDITIONS**:
8686
> [!NOTE]
8787
> If you are not a subscription owner, have an owner accept the terms for you by following the prerequisite steps in [Accept software terms in advance](avere-vfxt-prereqs.md#accept-software-terms-in-advance).
8888
89+
8990
Click **Purchase** when finished. After five or six minutes, your controller node will be up and running.
9091

9192
Visit the outputs page to gather the controller information that you need to create the cluster. Read [Information needed to create the cluster](#information-needed-to-create-the-cluster) to learn more.
@@ -220,7 +221,9 @@ To do the rest of the deployment steps, you need to connect to the cluster contr
220221
## Create the cluster node access role
221222

222223
> [!NOTE]
223-
> If you are not a subscription owner, and the role has not already been created, have a subscription owner follow these steps or use the procedure in [Create the Avere vFXT cluster runtime access role without a controller](avere-vfxt-pre-role.md).
224+
> * If you are not a subscription owner, and the role has not already been created, have a subscription owner follow these steps or use the procedure in [Create the Avere vFXT cluster runtime access role without a controller](avere-vfxt-pre-role.md).
225+
>
226+
> * Microsoft internal users should use the existing role named "Avere Cluster Runtime Operator" instead of attempting to create one.
224227
225228
[Role-based access control](https://docs.microsoft.com/azure/role-based-access-control/) (RBAC) gives the vFXT cluster nodes authorization to perform necessary tasks.
226229

articles/cognitive-services/QnAMaker/Concepts/confidence-score.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -47,6 +47,8 @@ When choosing your threshold, keep in mind the balance between Accuracy and Cove
4747

4848
- If **Coverage** (or recall) is more important- and you want to answer as many questions as possible, even if there is only a partial relation to the user's question- then LOWER the threshold. This means there could be more cases where the answer does not answer the user's actual query, but gives some other somewhat related answer. *For example:* if you make the threshold **30**, you might give not very related answers like, answering with the above example, for queries like "Where can I edit my KB?"
4949

50+
> [!NOTE]
51+
> Newer versions of QnA Maker include improvements to scoring logic, and could affect your threshold. Any time you update the service, make sure to test and tweak the threshold if necessary. You can check your QnA Service version [here](https://www.qnamaker.ai/UserSettings), and see how to get the latest updates [here](../How-To/troubleshooting-runtime.md).
5052
5153
## Improve confidence scores
5254
To improve the confidence score of a particular response to a user query, you can add the user query to the knowledge base as an alternate question on that response.

articles/load-balancer/quickstart-create-basic-load-balancer-portal.md

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,11 +4,14 @@ description: This quickstart shows how to create a public Basic load balancer by
44
services: load-balancer
55
documentationcenter: na
66
author: KumudD
7+
manager: jeconnoc
8+
editor: ''
9+
tags: azure-resource-manager
710
Customer intent: I want to create a Basic Load balancer so that I can load balance internet traffic to VMs.
811
ms.assetid: aa9d26ca-3d8a-4a99-83b7-c410dd20b9d0
912
ms.service: load-balancer
1013
ms.devlang: na
11-
ms.topic: quickstart
14+
ms.topic: hero-article
1215
ms.tgt_pltfrm: na
1316
ms.workload: infrastructure-services
1417
ms.date: 03/22/2018
@@ -151,7 +154,6 @@ To allow the Basic load balancer to monitor the status of your app, you use a he
151154
- **myHealthProbe** for the name of the health probe
152155
- **HTTP** for the protocol type
153156
- **80** for the port number
154-
- **Healthprobe.aspx** for the URI path. You can either replace this value with any other URI or keep the default path value of **"\\"** to get the default URI.
155157
- **15** for **Interval**, the number of seconds between probe attempts
156158
- **2** for **Unhealthy threshold**, the number of consecutive probe failures that must occur before a VM is considered unhealthy
157159

articles/load-balancer/quickstart-create-basic-load-balancer-powershell.md

Lines changed: 3 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -4,13 +4,11 @@ description: This quickstart shows how to create a Basic Load Balancer using Pow
44
services: load-balancer
55
documentationcenter: na
66
author: KumudD
7-
manager: jeconnoc
8-
tags: azure-resource-manager
97
Customer intent: I want to create a Basic Load balancer so that I can load balance internet traffic to VMs.
108
ms.assetid:
119
ms.service: load-balancer
1210
ms.devlang: na
13-
ms.topic: get-started-article
11+
ms.topic: quickstart
1412
ms.tgt_pltfrm: na
1513
ms.workload: infrastructure-services
1614
ms.date: 04/20/2018
@@ -194,10 +192,10 @@ $rule2 = New-AzureRmNetworkSecurityRuleConfig `
194192
Create a network security group with [New-AzureRmNetworkSecurityGroup](/powershell/module/azurerm.network/new-azurermnetworksecuritygroup).
195193

196194
```azurepowershell-interactive
197-
$nsg = New-AzureRmNetworkSecurityGroup`
195+
$nsg = New-AzureRmNetworkSecurityGroup `
198196
-ResourceGroupName 'myResourceGroupLB' `
199197
-Location 'EastUS' `
200-
-Name 'myNetworkSecurityGroup'`
198+
-Name 'myNetworkSecurityGroup' `
201199
-SecurityRules $rule1,$rule2
202200
```
203201

articles/load-balancer/quickstart-create-standard-load-balancer-powershell.md

Lines changed: 3 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -4,13 +4,11 @@ description: This quickstart shows how to create a Standard Load Balancer using
44
services: load-balancer
55
documentationcenter: na
66
author: KumudD
7-
manager: jeconnoc
8-
tags: azure-resource-manager
97
Customer intent: I want to create a Standard Load balancer so that I can load balance internet traffic to VMs.
108
ms.assetid:
119
ms.service: load-balancer
1210
ms.devlang: na
13-
ms.topic: get-started-article
11+
ms.topic: qucikstart
1412
ms.tgt_pltfrm: na
1513
ms.workload: infrastructure-services
1614
ms.date: 08/22/2018
@@ -197,10 +195,10 @@ $rule2 = New-AzureRmNetworkSecurityRuleConfig `
197195
Create a network security group with [New-AzureRmNetworkSecurityGroup](/powershell/module/azurerm.network/new-azurermnetworksecuritygroup).
198196

199197
```azurepowershell-interactive
200-
$nsg = New-AzureRmNetworkSecurityGroup`
198+
$nsg = New-AzureRmNetworkSecurityGroup `
201199
-ResourceGroupName 'myResourceGroupLB' `
202200
-Location 'EastUS' `
203-
-Name 'myNetworkSecurityGroup'`
201+
-Name 'myNetworkSecurityGroup' `
204202
-SecurityRules $rule1,$rule2
205203
```
206204

articles/load-balancer/quickstart-load-balancer-standard-public-portal.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,8 @@ description: This quickstart shows how to create a Standard load balancer by usi
44
services: load-balancer
55
documentationcenter: na
66
author: KumudD
7+
manager: jeconnoc
8+
editor: ''
79
tags: azure-resource-manager
810
Customer intent: I want to create a Standard Load balancer so that I can load balance internet traffic to VMs.
911

@@ -139,7 +141,6 @@ To allow the load balancer to monitor the status of your app, you use a health p
139141
- *myHealthProbe* - for the name of the health probe.
140142
- **HTTP** - for the protocol type.
141143
- *80* - for the port number.
142-
- **Healthprobe.aspx** for the URI path. You can either replace this value with any other URI or keep the default path value of **"\\"** to get the default URI.
143144
- *15* - for number of **Interval** in seconds between probe attempts.
144145
- *2* - for number of **Unhealthy threshold** or consecutive probe failures that must occur before a VM is considered unhealthy.
145146
4. Click **OK**.

articles/machine-learning/service/quickstart-create-workspace-with-python.md

Lines changed: 41 additions & 63 deletions
Original file line numberDiff line numberDiff line change
@@ -34,6 +34,9 @@ The following Azure resources are added automatically to your workspace when the
3434
- [Azure Application Insights](https://azure.microsoft.com/services/application-insights/)
3535
- [Azure Key Vault](https://azure.microsoft.com/services/key-vault/)
3636

37+
>[!NOTE]
38+
> Code in this article was tested with Azure Machine Learning SDK version 0.1.74
39+
3740
If you don’t have an Azure subscription, create a [free account](https://azure.microsoft.com/free/?WT.mc_id=A261C142F) before you begin.
3841

3942

@@ -52,64 +55,39 @@ Before you install the SDK, we recommend that you create an isolated Python envi
5255

5356
Open a command-line window. Then create a new conda environment named `myenv` with Python 3.6.
5457

55-
```sh
58+
```shell
5659
conda create -n myenv -y Python=3.6
5760
```
5861

5962
Activate the environment.
6063

61-
```sh
64+
```shell
6265
conda activate myenv
6366
```
6467

6568
### Install the SDK
6669

6770
In the activated conda environment, install the SDK. The below command installs the core components of the Machine Learning SDK. It also installs a Jupyter Notebook server in the `myenv` conda environment. The installation takes a few minutes to finish, depending on the configuration of your machine.
6871

69-
```sh
72+
```shell
7073
# install the base SDK and Jupyter Notebook
7174
pip install azureml-sdk[notebooks]
72-
73-
# install run histry widget
74-
jupyter nbextension install --py --user azureml.train.widgets
75-
76-
# enable run histry widget
77-
jupyter nbextension enable --py --user azureml.train.widgets
7875
```
7976

80-
You can also use different "extra" keywords to install additional components of the SDK.
81-
82-
```sh
83-
# install the base SDK and auto ml components
84-
pip install azureml-sdk[automl]
85-
86-
# install the base SDK and model explainability component
87-
pip install azureml-sdk[explain]
88-
89-
# install the base SDK and experimental components
90-
pip install azureml-sdk[contrib]
91-
92-
# install the base SDK and automl components in Azure Databricks environment
93-
# read more at: https://github.com/Azure/MachineLearningNotebooks/tree/master/databricks
94-
pip install azureml-sdk[databricks]
95-
```
9677

9778

9879
## Create a workspace
9980

10081
To launch the Jupyter Notebook, enter this command.
101-
```sh
82+
```shell
10283
jupyter notebook
10384
```
10485

10586
In the browser window, create a new notebook by using the default `Python 3` kernel.
10687

10788
To display the SDK version, enter the following Python code in a notebook cell and execute it.
10889

109-
```python
110-
import azureml.core
111-
print(azureml.core.VERSION)
112-
```
90+
[!code-python[](~/aml-sdk-samples/ignore/doc-qa/quickstart-create-workspace-with-python/quickstart.py?name=import)]
11391

11492
Create a new Azure resource group and a new workspace.
11593

@@ -118,35 +96,28 @@ Find a value for `<azure-subscription-id>` in the [subscriptions list in the Azu
11896
```python
11997
from azureml.core import Workspace
12098
ws = Workspace.create(name='myworkspace',
121-
subscription_id='<azure-subscription-id>',
99+
subscription_id='<azure-subscription-id>',
122100
resource_group='myresourcegroup',
123101
create_resource_group=True,
124-
location='eastus2' # or other supported Azure region
102+
location='eastus2' # or other supported Azure region
125103
)
126104
```
127105

128106
Executing the preceding code might trigger a new browser window for you to sign into your Azure account. After you sign in, the authentication token is cached locally.
129107

130108
To see the workspace details, such as associated storage, container registry, and key vault, enter the following code.
131109

132-
```python
133-
ws.get_details()
134-
```
110+
[!code-python[](~/aml-sdk-samples/ignore/doc-qa/quickstart-create-workspace-with-python/quickstart.py?name=getDetails)]
111+
135112

136113
## Write a configuration file
137114

138115
Save the details of your workspace in a configuration file into the current directory. This file is called 'aml_config\config.json'.
139116

140117
This workspace configuration file makes it easy to load this same workspace later. You can load it with other notebooks and scripts in the same directory or a subdirectory.
141118

142-
```python
143-
# Create the configuration file.
144-
ws.write_config()
119+
[!code-python[](~/aml-sdk-samples/ignore/doc-qa/quickstart-create-workspace-with-python/quickstart.py?name=writeConfig)]
145120

146-
# Use this code to load the workspace from
147-
# other scripts and notebooks in this directory.
148-
# ws = Workspace.from_config()
149-
```
150121

151122
The `write_config()` API call creates the configuration file in the current directory. The `config.json` file contains the following script.
152123

@@ -162,24 +133,8 @@ The `write_config()` API call creates the configuration file in the current dire
162133

163134
Write some code that uses the basic APIs of the SDK to track experiment runs.
164135

165-
```python
166-
from azureml.core import Experiment
167-
168-
# create a new experiment
169-
exp = Experiment(workspace=ws, name='myexp')
136+
[!code-python[](~/aml-sdk-samples/ignore/doc-qa/quickstart-create-workspace-with-python/quickstart.py?name=useWs)]
170137

171-
# start a run
172-
run = exp.start_logging()
173-
174-
# log a number
175-
run.log('my magic number', 42)
176-
177-
# log a list (Fibonacci numbers)
178-
run.log_list('my list', [1, 1, 2, 3, 5, 8, 13, 21, 34, 55])
179-
180-
# finish the run
181-
run.complete()
182-
```
183138

184139
## View logged results
185140
When the run finishes, you can view the experiment run in the Azure portal. Use the following code to print a URL to the results for the last run.
@@ -198,9 +153,8 @@ Use the link to view the logged values in the Azure portal in your browser.
198153
199154
If you don't plan to use the resources you created here, delete them so you don't incur any charges.
200155

201-
```python
202-
ws.delete(delete_dependent_resources=True)
203-
```
156+
[!code-python[](~/aml-sdk-samples/ignore/doc-qa/quickstart-create-workspace-with-python/quickstart.py?name=delete)]
157+
204158

205159
## Next steps
206160

@@ -212,11 +166,35 @@ You need a few more packages in your environment to use it with Machine Learning
212166
1. In the command-line window, use `Ctrl`+`C` to stop the notebook server.
213167
1. Install additional packages.
214168

215-
```sh
169+
```shell
216170
conda install -y cython matplotlib scikit-learn pandas numpy
217171
pip install azureml-sdk[automl]
172+
173+
# install run history widget
174+
jupyter nbextension install --py --user azureml.train.widgets
175+
176+
# enable run history widget
177+
jupyter nbextension enable --py --user azureml.train.widgets
218178
```
219179

180+
You can also use different "extra" keywords to install additional components of the SDK.
181+
182+
```shell
183+
# install the base SDK and auto ml components
184+
pip install azureml-sdk[automl]
185+
186+
# install the base SDK and model explainability component
187+
pip install azureml-sdk[explain]
188+
189+
# install the base SDK and experimental components
190+
pip install azureml-sdk[contrib]
191+
192+
# install the base SDK and automl components in Azure Databricks environment
193+
# read more at: https://github.com/Azure/MachineLearningNotebooks/tree/master/databricks
194+
pip install azureml-sdk[databricks]
195+
```
196+
197+
220198
After you install these packages, follow the tutorials to train and deploy a model.
221199

222200
> [!div class="nextstepaction"]

articles/service-bus-messaging/TOC.yml

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -188,6 +188,8 @@
188188
href: /dotnet/api/microsoft.azure.servicebus
189189
- name: Java
190190
href: /java/api/overview/azure/servicebus
191+
- name: Node.js
192+
href: /javascript/api/overview/azure/service-bus
191193
- name: Azure PowerShell
192194
href: /powershell/module/azurerm.servicebus
193195
- name: REST

articles/service-bus-messaging/index.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -158,6 +158,6 @@ sections:
158158
- title: Command-Line
159159
html: <p><a href="/powershell/module/azurerm.servicebus/">Azure PowerShell</a></p><p><a href="/cli/azure/servicebus">Azure CLI</a></p>
160160
- title: Languages
161-
html: <p><a href="/dotnet/api/microsoft.servicebus.messaging">.NET Framework</a></p><p><a href="/dotnet/api/microsoft.azure.servicebus">.NET Standard</a></p><p><a href="/java/api/overview/azure/servicebus">Java</a></p>
161+
html: <p><a href="/dotnet/api/microsoft.servicebus.messaging">.NET Framework</a></p><p><a href="/dotnet/api/microsoft.azure.servicebus">.NET Standard</a></p><p><a href="/java/api/overview/azure/servicebus">Java</a></p><p><a href="/javascript/api/overview/azure/service-bus">Node.js</a></p>
162162
- title: REST
163163
html: <p><a href="/rest/api/servicebus/">REST API Reference</a></p>

0 commit comments

Comments
 (0)