Skip to content

Commit 0d1f3a8

Browse files
authored
Merge pull request #194775 from ssalgadodev/ssalgado-vsbuttonupdate
Create Resource button changed to execute yaml
2 parents 01375fe + 3c950af commit 0d1f3a8

File tree

2 files changed

+14
-17
lines changed

2 files changed

+14
-17
lines changed

articles/machine-learning/how-to-manage-resources-vscode.md

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,7 @@ The quickest way to create resources is using the extension's toolbar.
3232
1. Select **+** in the activity bar.
3333
1. Choose your resource from the dropdown list.
3434
1. Configure the specification file. The information required depends on the type of resource you want to create.
35-
1. Right-click the specification file and select **Azure ML: Create Resource**.
35+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
3636

3737
Alternatively, you can create a resource by using the command palette:
3838

@@ -50,7 +50,7 @@ To version a resource:
5050

5151
1. Use the existing specification file that created the resource or follow the create resources process to create a new specification file.
5252
1. Increment the version number in the template.
53-
1. Right-click the specification file and select **Azure ML: Create Resource**.
53+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
5454

5555
As long as the name of the updated resource is the same as the previous version, Azure Machine Learning picks up the changes and creates a new version.
5656

@@ -62,7 +62,7 @@ For more information, see [workspaces](concept-workspace.md).
6262

6363
1. In the Azure Machine Learning view, right-click your subscription node and select **Create Workspace**.
6464
1. A specification file appears. Configure the specification file.
65-
1. Right-click the specification file and select **Azure ML: Create Resource**.
65+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
6666

6767
Alternatively, use the `> Azure ML: Create Workspace` command in the command palette.
6868

@@ -94,7 +94,7 @@ For more information, see [datastores](concept-data.md#datastores).
9494
1. Right-click the **Datastores** node and select **Create Datastore**.
9595
1. Choose the datastore type.
9696
1. A specification file appears. Configure the specification file.
97-
1. Right-click the specification file and select **Azure ML: Create Resource**.
97+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
9898

9999
Alternatively, use the `> Azure ML: Create Datastore` command in the command palette.
100100

@@ -124,7 +124,7 @@ For more information, see [datasets](concept-data.md#datasets)
124124
1. Expand the workspace node you want to create the dataset under.
125125
1. Right-click the **Datasets** node and select **Create Dataset**.
126126
1. A specification file appears. Configure the specification file.
127-
1. Right-click the specification file and select **Azure ML: Create Resource**.
127+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
128128

129129
Alternatively, use the `> Azure ML: Create Dataset` command in the command palette.
130130

@@ -150,7 +150,7 @@ For more information, see [environments](concept-environments.md).
150150
1. Expand the workspace node you want to create the datastore under.
151151
1. Right-click the **Environments** node and select **Create Environment**.
152152
1. A specification file appears. Configure the specification file.
153-
1. Right-click the specification file and select **Azure ML: Create Resource**.
153+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
154154

155155
Alternatively, use the `> Azure ML: Create Environment` command in the command palette.
156156

@@ -180,7 +180,7 @@ Using the resource nodes in the Azure Machine Learning view:
180180
1. Right-click the **Experiments** node in your workspace and select **Create Job**.
181181
1. Choose your job type.
182182
1. A specification file appears. Configure the specification file.
183-
1. Right-click the specification file and select **Azure ML: Create Resource**.
183+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
184184

185185
Alternatively, use the `> Azure ML: Create Job` command in the command palette.
186186

@@ -229,7 +229,7 @@ For more information, see [compute instances](concept-compute-instance.md).
229229
1. Expand the **Compute** node.
230230
1. Right-click the **Compute instances** node in your workspace and select **Create Compute**.
231231
1. A specification file appears. Configure the specification file.
232-
1. Right-click the specification file and select **Azure ML: Create Resource**.
232+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
233233

234234
Alternatively, use the `> Azure ML: Create Compute` command in the command palette.
235235

@@ -275,7 +275,7 @@ For more information, see [training compute targets](concept-compute-target.md#t
275275
1. Expand the **Compute** node.
276276
1. Right-click the **Compute clusters** node in your workspace and select **Create Compute**.
277277
1. A specification file appears. Configure the specification file.
278-
1. Right-click the specification file and select **Azure ML: Create Resource**.
278+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
279279

280280
Alternatively, use the `> Azure ML: Create Compute` command in the command palette.
281281

@@ -346,7 +346,7 @@ For more information, see [models](concept-azure-machine-learning-architecture.m
346346
1. Expand your workspace node.
347347
1. Right-click the **Models** node in your workspace and select **Create Model**.
348348
1. A specification file appears. Configure the specification file.
349-
1. Right-click the specification file and select **Azure ML: Create Resource**.
349+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
350350

351351
Alternatively, use the `> Azure ML: Create Model` command in the command palette.
352352

@@ -386,7 +386,7 @@ For more information, see [endpoints](concept-azure-machine-learning-architectur
386386
1. Right-click the **Models** node in your workspace and select **Create Endpoint**.
387387
1. Choose your endpoint type.
388388
1. A specification file appears. Configure the specification file.
389-
1. Right-click the specification file and select **Azure ML: Create Resource**.
389+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
390390

391391
Alternatively, use the `> Azure ML: Create Endpoint` command in the command palette.
392392

articles/machine-learning/tutorial-train-deploy-image-classification-model-vscode.md

Lines changed: 3 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -71,7 +71,7 @@ The first thing you have to do to build an application in Azure Machine Learning
7171

7272
The specification file creates a workspace called `TeamWorkspace` in the `WestUS2` region. The rest of the options defined in the specification file provide friendly naming, descriptions, and tags for the workspace.
7373

74-
1. Right-click the specification file and select **Azure ML: Create Resource**. Creating a resource uses the configuration options defined in the YAML specification file and submits a job using the CLI (v2). At this point, a request to Azure is made to create a new workspace and dependent resources in your account. After a few minutes, the new workspace appears in your subscription node.
74+
1. Right-click the specification file and select **Azure ML: Execute YAML**. Creating a resource uses the configuration options defined in the YAML specification file and submits a job using the CLI (v2). At this point, a request to Azure is made to create a new workspace and dependent resources in your account. After a few minutes, the new workspace appears in your subscription node.
7575
1. Set `TeamWorkspace` as your default workspace. Doing so places resources and jobs you create in the workspace by default. Select the **Set Azure ML Workspace** button on the Visual Studio Code status bar and follow the prompts to set `TeamWorkspace` as your default workspace.
7676

7777
For more information on workspaces, see [how to manage resources in VS Code](how-to-manage-resources-vscode.md).
@@ -103,7 +103,7 @@ A compute target is the computing resource or environment where you run training
103103
104104
For more information on VM sizes, see [sizes for Linux virtual machines in Azure](../virtual-machines/sizes.md).
105105
106-
1. Right-click the specification file and select **Azure ML: Create Resource**.
106+
1. Right-click the specification file and select **Azure ML: Execute YAML**.
107107
108108
After a few minutes, the new compute target appears in the *Compute > Compute clusters* node of your workspace.
109109
@@ -131,10 +131,7 @@ This specification file submits a training job called `tensorflow-mnist-example`
131131
To submit the training job:
132132
133133
1. Open the *job.yml* file.
134-
1. Right-click the file in the text editor and select **Azure ML: Create Resource**.
135-
136-
> [!div class="mx-imgBorder"]
137-
> ![Run experiment](./media/tutorial-train-deploy-image-classification-model-vscode/run-experiment.png)
134+
1. Right-click the file in the text editor and select **Azure ML: Execute YAML**.
138135
139136
At this point, a request is sent to Azure to run your experiment on the selected compute target in your workspace. This process takes several minutes. The amount of time to run the training job is impacted by several factors like the compute type and training data size. To track the progress of your experiment, right-click the current run node and select **View Run in Azure portal**.
140137

0 commit comments

Comments
 (0)