Skip to content

Commit 0e0de44

Browse files
committed
fix more
1 parent 150f8f7 commit 0e0de44

File tree

2 files changed

+36
-25
lines changed

2 files changed

+36
-25
lines changed

articles/machine-learning/how-to-auto-train-image-models.md

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -556,7 +556,7 @@ Once the run completes, you can register the model that was created from the bes
556556
### Get the best run
557557

558558

559-
# [CLI v2](#tab/CLI-v2)
559+
# [Azure CLI](#tab/cli)
560560

561561
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
562562
```yaml
@@ -578,7 +578,7 @@ Once the run completes, you can register the model that was created from the bes
578578

579579
Register the model either using the azureml path or your locally downloaded path.
580580

581-
# [CLI v2](#tab/CLI-v2)
581+
# [Azure CLI](#tab/cli)
582582

583583
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
584584

@@ -596,7 +596,7 @@ After you register the model you want to use, you can deploy it using the manage
596596

597597
### Configure online endpoint
598598

599-
# [CLI v2](#tab/CLI-v2)
599+
# [Azure CLI](#tab/cli)
600600

601601
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
602602

@@ -619,7 +619,7 @@ auth_mode: key
619619
Using the `MLClient` created earlier, we'll now create the Endpoint in the workspace. This command will start the endpoint creation and return a confirmation response while the endpoint creation continues.
620620

621621

622-
# [CLI v2](#tab/CLI-v2)
622+
# [Azure CLI](#tab/cli)
623623

624624
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
625625
```azurecli
@@ -638,7 +638,7 @@ az ml online-endpoint create --file .\create_endpoint.yml --workspace-name [YOUR
638638
A deployment is a set of resources required for hosting the model that does the actual inferencing. We'll create a deployment for our endpoint using the `ManagedOnlineDeployment` class. You can use either GPU or CPU VM SKUs for your deployment cluster.
639639

640640

641-
# [CLI v2](#tab/CLI-v2)
641+
# [Azure CLI](#tab/cli)
642642

643643
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
644644

@@ -674,7 +674,7 @@ readiness_probe:
674674

675675
Using the `MLClient` created earlier, we'll now create the deployment in the workspace. This command will start the deployment creation and return a confirmation response while the deployment creation continues.
676676

677-
# [CLI v2](#tab/CLI-v2)
677+
# [Azure CLI](#tab/cli)
678678

679679
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
680680

@@ -692,7 +692,7 @@ az ml online-deployment create --file .\create_deployment.yml --workspace-name [
692692
### update traffic:
693693
By default the current deployment is set to receive 0% traffic. you can set the traffic percentage current deployment should receive. Sum of traffic percentages of all the deployments with one end point shouldn't exceed 100%.
694694

695-
# [CLI v2](#tab/CLI-v2)
695+
# [Azure CLI](#tab/cli)
696696

697697
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
698698

articles/machine-learning/tutorial-auto-train-image-models.md

Lines changed: 29 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -411,15 +411,16 @@ Once the run completes, you can register the model that was created from the bes
411411
### Get the best run
412412

413413

414-
# [CLI v2](#tab/CLI-v2)
414+
# [Azure CLI](#tab/cli)
415415

416416
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
417417
```yaml
418418
to be supported
419419
```
420420

421421

422-
# [Python SDK v2 (preview)](#tab/SDK-v2)
422+
# [Python SDK](#tab/python)
423+
[!INCLUDE [sdk v2](../../includes/machine-learning-sdk-v2.md)]
423424

424425
[!Notebook-python[] (~/azureml-examples-main/sdk/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items/automl-image-object-detection-task-fridge-items.ipynb?name=best_run)]
425426

@@ -432,14 +433,15 @@ Once the run completes, you can register the model that was created from the bes
432433

433434
Register the model either using the azureml path or your locally downloaded path.
434435

435-
# [CLI v2](#tab/CLI-v2)
436+
# [Azure CLI](#tab/cli)
436437

437438
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
438439

439440
```azurecli
440441
az ml model create --name od-fridge-items-mlflow-model --version 1 --path azureml://jobs/$best_run/outputs/artifacts/outputs/mlflow-model/ --type mlflow_model --workspace-name [YOUR_AZURE_WORKSPACE] --resource-group [YOUR_AZURE_RESOURCE_GROUP] --subscription [YOUR_AZURE_SUBSCRIPTION]
441442
```
442-
# [Python SDK v2 (preview)](#tab/SDK-v2)
443+
# [Python SDK](#tab/python)
444+
[!INCLUDE [sdk v2](../../includes/machine-learning-sdk-v2.md)]
443445

444446
[!Notebook-python[] (~/azureml-examples-main/sdk/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items/automl-image-object-detection-task-fridge-items.ipynb?name=register_model)]
445447
---
@@ -448,7 +450,7 @@ After you register the model you want to use, you can deploy it using the manage
448450

449451
### Configure online endpoint
450452

451-
# [CLI v2](#tab/CLI-v2)
453+
# [Azure CLI](#tab/cli)
452454

453455
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
454456

@@ -458,7 +460,8 @@ name: od-fridge-items-endpoint
458460
auth_mode: key
459461
```
460462

461-
# [Python SDK v2 (preview)](#tab/SDK-v2)
463+
# [Python SDK](#tab/python)
464+
[!INCLUDE [sdk v2](../../includes/machine-learning-sdk-v2.md)]
462465

463466
[!Notebook-python[] (~/azureml-examples-main/sdk/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items/automl-image-object-detection-task-fridge-items.ipynb?name=endpoint)]
464467
---
@@ -468,15 +471,16 @@ auth_mode: key
468471
Using the `MLClient` created earlier, we'll now create the Endpoint in the workspace. This command will start the endpoint creation and return a confirmation response while the endpoint creation continues.
469472

470473

471-
# [CLI v2](#tab/CLI-v2)
474+
# [Azure CLI](#tab/cli)
472475

473476
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
474477

475478
```azurecli
476479
az ml online-endpoint create --file .\create_endpoint.yml --workspace-name [YOUR_AZURE_WORKSPACE] --resource-group [YOUR_AZURE_RESOURCE_GROUP] --subscription [YOUR_AZURE_SUBSCRIPTION]
477480
```
478481

479-
# [Python SDK v2 (preview)](#tab/SDK-v2)
482+
# [Python SDK](#tab/python)
483+
[!INCLUDE [sdk v2](../../includes/machine-learning-sdk-v2.md)]
480484

481485
[!Notebook-python[] (~/azureml-examples-main/sdk/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items/automl-image-object-detection-task-fridge-items.ipynb?name=create_endpoint)]
482486
---
@@ -486,7 +490,7 @@ az ml online-endpoint create --file .\create_endpoint.yml --workspace-name [YOUR
486490
A deployment is a set of resources required for hosting the model that does the actual inferencing. We'll create a deployment for our endpoint using the `ManagedOnlineDeployment` class. You can use either GPU or CPU VM SKUs for your deployment cluster.
487491

488492

489-
# [CLI v2](#tab/CLI-v2)
493+
# [Azure CLI](#tab/cli)
490494

491495
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
492496

@@ -510,7 +514,8 @@ readiness_probe:
510514
initial_delay: 2000
511515
```
512516

513-
# [Python SDK v2 (preview)](#tab/SDK-v2)
517+
# [Python SDK](#tab/python)
518+
[!INCLUDE [sdk v2](../../includes/machine-learning-sdk-v2.md)]
514519

515520
[!Notebook-python[] (~/azureml-examples-main/sdk/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items/automl-image-object-detection-task-fridge-items.ipynb?name=deploy)]
516521
---
@@ -520,44 +525,47 @@ readiness_probe:
520525

521526
Using the `MLClient` created earlier, we'll now create the deployment in the workspace. This command will start the deployment creation and return a confirmation response while the deployment creation continues.
522527

523-
# [CLI v2](#tab/CLI-v2)
528+
# [Azure CLI](#tab/cli)
524529

525530
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
526531

527532
```azurecli
528533
az ml online-deployment create --file .\create_deployment.yml --workspace-name [YOUR_AZURE_WORKSPACE] --resource-group [YOUR_AZURE_RESOURCE_GROUP] --subscription [YOUR_AZURE_SUBSCRIPTION]
529534
```
530535

531-
# [Python SDK v2 (preview)](#tab/SDK-v2)
536+
# [Python SDK](#tab/python)
537+
[!INCLUDE [sdk v2](../../includes/machine-learning-sdk-v2.md)]
532538

533539
[!Notebook-python[] (~/azureml-examples-main/sdk/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items/automl-image-object-detection-task-fridge-items.ipynb?name=create_deploy)]
534540
---
535541

536542
### Update traffic:
537543
By default the current deployment is set to receive 0% traffic. you can set the traffic percentage current deployment should receive. Sum of traffic percentages of all the deployments with one end point should not exceed 100%.
538544

539-
# [CLI v2](#tab/CLI-v2)
545+
# [Azure CLI](#tab/cli)
540546

541547
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
542548

543549
```azurecli
544550
az ml online-endpoint update --name 'od-fridge-items-endpoint' --traffic 'od-fridge-items-mlflow-deploy=100' --workspace-name [YOUR_AZURE_WORKSPACE] --resource-group [YOUR_AZURE_RESOURCE_GROUP] --subscription [YOUR_AZURE_SUBSCRIPTION]
545551
```
546552

547-
# [Python SDK v2 (preview)](#tab/SDK-v2)
553+
# [Python SDK](#tab/python)
554+
[!INCLUDE [sdk v2](../../includes/machine-learning-sdk-v2.md)]
548555

549556
[!Notebook-python[] (~/azureml-examples-main/sdk/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items/automl-image-object-detection-task-fridge-items.ipynb?name=update_traffic)]
550557
---
551558

552559
## Test the deployment
553-
# [CLI v2](#tab/CLI-v2)
560+
# [Azure CLI](#tab/cli)
554561

555562
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
556563
```yaml
557564
558565
```
559566

560-
# [Python SDK v2 (preview)](#tab/SDK-v2)
567+
# [Python SDK](#tab/python)
568+
[!INCLUDE [sdk v2](../../includes/machine-learning-sdk-v2.md)]
561569

562570
[!Notebook-python[] (~/azureml-examples-main/sdk/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items/automl-image-object-detection-task-fridge-items.ipynb?name=create_inference_request)]
563571

@@ -569,14 +577,15 @@ az ml online-endpoint update --name 'od-fridge-items-endpoint' --traffic 'od-fri
569577
## Visualize detections
570578

571579
Now that you have scored a test image, you can visualize the bounding boxes for this image. To do so, be sure you have matplotlib installed.
572-
# [CLI v2](#tab/CLI-v2)
580+
# [Azure CLI](#tab/cli)
573581

574582
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
575583
```yaml
576584
577585
```
578586

579-
# [Python SDK v2 (preview)](#tab/SDK-v2)
587+
# [Python SDK](#tab/python)
588+
[!INCLUDE [sdk v2](../../includes/machine-learning-sdk-v2.md)]
580589

581590
[!Notebook-python[] (~/azureml-examples-main/sdk/jobs/automl-standalone-jobs/automl-image-object-detection-task-fridge-items/automl-image-object-detection-task-fridge-items.ipynb?name=visualize_detections)]
582591
---
@@ -611,10 +620,12 @@ In this automated machine learning tutorial, you did the following tasks:
611620
* [Learn how to configure incremental training on computer vision models](how-to-auto-train-image-models.md#incremental-training-optional).
612621
* See [what hyperparameters are available for computer vision tasks](reference-automl-images-hyperparameters.md).
613622
* Code examples:
623+
614624
# [Azure CLI](#tab/cli)
615625
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
616626

617627
* Review detailed code examples and use cases in the [azureml-examples repository for automated machine learning samples](https://github.com/Azure/azureml-examples/tree/sdk-preview/cli/jobs/automl-standalone-jobs). Please check the folders with 'cli-automl-image-' prefix for samples specific to building computer vision models.
628+
618629
# [Python SDK](#tab/python)
619630
[!INCLUDE [sdk v2](../../includes/machine-learning-sdk-v2.md)]
620631

0 commit comments

Comments
 (0)