Skip to content

Commit 2a1ef5b

Browse files
author
Sandeep Nair
committed
feedback edits
1 parent 72287a7 commit 2a1ef5b

File tree

2 files changed

+5
-5
lines changed

2 files changed

+5
-5
lines changed

articles/cosmos-db/mongodb/vcore/TOC.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@
1717
- name: Node.js
1818
href: tutorial-nodejs-web-app.md
1919
- name: Build AI Apps with Vector Search
20-
href: tutorial-vector-search-in-rag.md
20+
href: tutorial-vector-search-in-ai-apps.md
2121
- name: Concepts
2222
items:
2323
- name: Vector search

articles/cosmos-db/mongodb/vcore/tutorial-vector-search-in-rag.md renamed to articles/cosmos-db/mongodb/vcore/tutorial-vector-search-in-ai-apps.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -34,11 +34,11 @@ Retrieval Augmented Generation harnesses external knowledge and models to effici
3434

3535
RAG's power is truly harnessed through the native vector search capability within Azure Cosmos DB for MongoDB vCore. This enables a seamless fusion of AI-focused applications with stored data in Azure Cosmos DB. Vector search optimally stores, indexes, and searches high-dimensional vector data directly within Azure Cosmos DB for MongoDB vCore alongside other application data. This eliminates the need to migrate data to costlier alternatives for vector search functionality.
3636

37-
## Code Samples and Tutorials
37+
## Code samples and tutorials
3838

39-
1. [**.NET Retail Chatbot Demo**](https://github.com/AzureCosmosDB/VectorSearchAiAssistant/tree/mongovcorev2): Learn how to build a chatbot using .NET that demonstrates RAG's potential in a retail context.
40-
2. [**.NET Tutorial - Recipe Chatbot**](https://github.com/microsoft/AzureDataRetrievalAugmentedGenerationSamples/tree/main/C%23/CosmosDB-MongoDBvCore): Walk through creating a recipe chatbot using .NET, showcasing RAG's application in a culinary scenario.
41-
3. [**Python Notebook Tutorial**](https://github.com/microsoft/AzureDataRetrievalAugmentedGenerationSamples/tree/main/Python/CosmosDB-MongoDB-vCore) - Azure Product Chatbot: Explore a Python notebook tutorial that guides you through constructing an Azure product chatbot, highlighting RAG's benefits.
39+
- [**.NET Retail Chatbot Demo**](https://github.com/AzureCosmosDB/VectorSearchAiAssistant/tree/mongovcorev2): Learn how to build a chatbot using .NET that demonstrates RAG's potential in a retail context.
40+
- [**.NET Tutorial - Recipe Chatbot**](https://github.com/microsoft/AzureDataRetrievalAugmentedGenerationSamples/tree/main/C%23/CosmosDB-MongoDBvCore): Walk through creating a recipe chatbot using .NET, showcasing RAG's application in a culinary scenario.
41+
- [**Python Notebook Tutorial**](https://github.com/microsoft/AzureDataRetrievalAugmentedGenerationSamples/tree/main/Python/CosmosDB-MongoDB-vCore) - Azure Product Chatbot: Explore a Python notebook tutorial that guides you through constructing an Azure product chatbot, highlighting RAG's benefits.
4242

4343

4444
## Next steps

0 commit comments

Comments
 (0)