Skip to content

Commit 4e93e6c

Browse files
committed
links again
1 parent 981fef4 commit 4e93e6c

File tree

1 file changed

+16
-16
lines changed

1 file changed

+16
-16
lines changed

articles/machine-learning/how-to-select-algorithms.md

Lines changed: 16 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -44,24 +44,24 @@ The following table summarizes some of the most important characteristics of alg
4444
| **Algorithm** | **Accuracy** | **Training time** | **Linearity** | **Parameters** | **Notes** |
4545
| --- |:---:|:---:|:---:|:---:| --- |
4646
| **Classification family** | | | | | |
47-
| [Two-Class logistic regression](algorithm-module-reference/two-class-logistic-regression?WT.mc_id=docs-article-lazzeri) |Good |Fast |Yes |4 | |
48-
| [Two-class decision forest](algorithm-module-reference/two-class-decision-forest?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |5 |Shows slower scoring times. Suggest not working with One-vs-All Multiclass, because of slower scoring times caused by tread locking in accumulating tree predictions |
49-
| [Two-class boosted decision tree](algorithm-module-reference/two-class-boosted-decision-tree?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |6 |Large memory footprint |
50-
| [Two-class neural network](algorithm-module-reference/two-class-neural-network?WT.mc_id=docs-article-lazzeri) |Good |Moderate |No |8 | |
51-
| [Two-class averaged perceptron](algorithm-module-reference/two-class-averaged-perceptron?WT.mc_id=docs-article-lazzeri) |Good |Moderate |Yes |4 | |
52-
| [Two-class support vector machine](algorithm-module-reference/two-class-support-vector-machine?WT.mc_id=docs-article-lazzeri) |Good |Fast |Yes |5 |Good for large feature sets |
53-
| [Multiclass logistic regression](algorithm-module-reference/multiclass-logistic-regression?WT.mc_id=docs-article-lazzeri) |Good |Fast |Yes |4 | |
54-
| [Multiclass decision forest](algorithm-module-reference/multiclass-decision-forest?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |5 |Shows slower scoring times |
55-
| [Multiclass boosted decision tree](algorithm-module-reference/multiclass-boosted-decision-tree?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |6 | Tends to improve accuracy with some small risk of less coverage |
56-
| [Multiclass neural network](algorithm-module-reference/multiclass-neural-network?WT.mc_id=docs-article-lazzeri) |Good |Moderate |No |8 | |
57-
| [One-vs-all multiclass](algorithm-module-reference/one-vs-all-multiclass?WT.mc_id=docs-article-lazzeri) | - | - | - | - |See properties of the two-class method selected |
47+
| [Two-Class logistic regression](https://docs.microsoft.com/azure/machine-learning/algorithm-module-reference/two-class-logistic-regression?WT.mc_id=docs-article-lazzeri) |Good |Fast |Yes |4 | |
48+
| [Two-class decision forest](https://docs.microsoft.com/azure/machine-learning/algorithm-module-reference/two-class-decision-forest?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |5 |Shows slower scoring times. Suggest not working with One-vs-All Multiclass, because of slower scoring times caused by tread locking in accumulating tree predictions |
49+
| [Two-class boosted decision tree](https://docs.microsoft.com/azure/machine-learning/algorithm-module-reference/two-class-boosted-decision-tree?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |6 |Large memory footprint |
50+
| [Two-class neural network](https://docs.microsoft.com/azure/machine-learning/algorithm-module-reference/two-class-neural-network?WT.mc_id=docs-article-lazzeri) |Good |Moderate |No |8 | |
51+
| [Two-class averaged perceptron](https://docs.microsoft.com/azure/machine-learning/algorithm-module-reference/two-class-averaged-perceptron?WT.mc_id=docs-article-lazzeri) |Good |Moderate |Yes |4 | |
52+
| [Two-class support vector machine](https://docs.microsoft.com/azure/machine-learning/algorithm-module-reference/two-class-support-vector-machine?WT.mc_id=docs-article-lazzeri) |Good |Fast |Yes |5 |Good for large feature sets |
53+
| [Multiclass logistic regression](https://docs.microsoft.com/azure/machine-learning/algorithm-module-reference/multiclass-logistic-regression?WT.mc_id=docs-article-lazzeri) |Good |Fast |Yes |4 | |
54+
| [Multiclass decision forest](https://docs.microsoft.com/azure/machine-learning/algorithm-module-reference/multiclass-decision-forest?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |5 |Shows slower scoring times |
55+
| [Multiclass boosted decision tree](https://docs.microsoft.com/azure/machine-learning/algorithm-module-reference/multiclass-boosted-decision-tree?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |6 | Tends to improve accuracy with some small risk of less coverage |
56+
| [Multiclass neural network](https://docs.microsoft.com/azure/machine-learning/algorithm-module-reference/multiclass-neural-network?WT.mc_id=docs-article-lazzeri) |Good |Moderate |No |8 | |
57+
| [One-vs-all multiclass](https://docs.microsoft.com/azure/machine-learning/algorithm-module-reference/one-vs-all-multiclass?WT.mc_id=docs-article-lazzeri) | - | - | - | - |See properties of the two-class method selected |
5858
| **[Regression family]** | | | | | |
59-
| [Linear regression](algorithm-module-reference/linear-regression?WT.mc_id=docs-article-lazzeri) |Good |Fast |Yes |4 | |
60-
| [Decision forest regression](algorithm-module-reference/decision-forest-regression?WT.mc_id=docs-article-lazzeri)|Excellent |Moderate |No |5 | |
61-
| [Boosted decision tree regression](algorithm-module-reference/boosted-decision-tree-regression?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |6 |Large memory footprint |
62-
| [Neural network regression](algorithm-module-reference/neural-network-regression?WT.mc_id=docs-article-lazzeri) |Good |Moderate |No |8 | |
59+
| [Linear regression](https://docs.microsoft.com/azure/machine-learning/algorithm-module-reference/linear-regression?WT.mc_id=docs-article-lazzeri) |Good |Fast |Yes |4 | |
60+
| [Decision forest regression](https://docs.microsoft.com/azure/machine-learning/algorithm-module-reference/decision-forest-regression?WT.mc_id=docs-article-lazzeri)|Excellent |Moderate |No |5 | |
61+
| [Boosted decision tree regression](https://docs.microsoft.com/azure/machine-learning/algorithm-module-reference/boosted-decision-tree-regression?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |6 |Large memory footprint |
62+
| [Neural network regression](https://docs.microsoft.com/azure/machine-learning/algorithm-module-reference/neural-network-regression?WT.mc_id=docs-article-lazzeri) |Good |Moderate |No |8 | |
6363
| **Clustering family** | | | | | |
64-
| [K-means clustering](/algorithm-module-reference/k-means-clustering?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |Yes |8 |A clustering algorithm |
64+
| [K-means clustering](/https://docs.microsoft.com/azure/machine-learning/algorithm-module-reference/k-means-clustering?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |Yes |8 |A clustering algorithm |
6565

6666
## Requirements for a data science scenario
6767

0 commit comments

Comments
 (0)