You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: articles/machine-learning/how-to-r-deploy-r-model.md
+4-4Lines changed: 4 additions & 4 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -34,9 +34,9 @@ Create this folder structure for your project:
34
34
📂 r-deploy-azureml
35
35
├─📂 docker-context
36
36
│ ├─ Dockerfile
37
-
│ ├─ start_plumber.R
37
+
│ └─ start_plumber.R
38
38
├─📂 src
39
-
│ ├─ plumber.R
39
+
│ └─ plumber.R
40
40
├─ deployment.yml
41
41
├─ endpoint.yml
42
42
```
@@ -303,7 +303,7 @@ A *deployment* is a set of resources required for hosting the model that does th
303
303
1. Next, in your terminal execute the following CLI command to create the deployment (notice that you're setting 100% of the traffic to this model):
304
304
305
305
```azurecli
306
-
az ml online-deployment create -f r-deployment.yml --all-traffic --skip-script-validation
306
+
az ml online-deployment create -f deployment.yml --all-traffic --skip-script-validation
307
307
```
308
308
309
309
> [!NOTE]
@@ -362,4 +362,4 @@ az ml online-endpoint delete --name r-endpoint-forecast
362
362
363
363
## Next steps
364
364
365
-
For more information about using R with Azure Machine Learning, see [Overview of R capabilities in Azure Machine Learning](how-to-r-overview-r-capabilities.md)
365
+
For more information about using R with Azure Machine Learning, see [Overview of R capabilities in Azure Machine Learning](how-to-r-overview-r-capabilities.md)
0 commit comments