You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Use the best model iteration to forecast values for data that wasn't used to train the model.
297
+
Use the best model iteration to forecast values for data that wasn't used to train the model.
298
+
299
+
### Evaluating model accuracy with a rolling forecast
300
+
301
+
Before you put a model into production, you should evaluate its accuracy on a test set held out from the training data. A best practice procedure is a so-called rolling evaluation which rolls the trained forecaster forward in time over the test set, averaging error metrics over several prediction windows to obtain statistically robust estimates for some set of chosen metrics. Ideally, the test set for the evaluation is long relative to the model's forecast horizon. Estimates of forecasting error may otherwise be statistically noisy and, therefore, less reliable.
302
+
303
+
For example, suppose you train a model on daily sales to predict demand up to two weeks (14 days) into the future. If there is sufficient historic data available, you might reserve the final several months to even a year of the data for the test set. The rolling evaluation begins by generating a 14-day-ahead forecast for the first two weeks of the test set. Then, the forecaster is advanced by some number of days into the test set and you generate another 14-day-ahead forecast from the new position. The process continues until you get to the end of the test set.
304
+
305
+
To do a rolling evaluation, you call the `rolling_forecast` method of the `fitted_model`, then compute desired metrics on the result. For example, assume you have test set features in a pandas DataFrame called `test_features_df` and the test set actual values of the target in a numpy array called `test_target`. A rolling evaluation using the mean squared error is shown in the following code sample:
In the above sample, the step size for the rolling forecast is set to 1 which means that the forecaster is advanced 1 period, or 1 day in our demand prediction example, at each iteration. The total number of forecasts returned by `rolling_forecast` thus depends on the length of the test set and this step size. For more details and examples see the [rolling_forecast() documentation](/python/api/azureml-training-tabular/azureml.training.tabular.models.forecasting_pipeline_wrapper_base.forecastingpipelinewrapperbase#azureml-training-tabular-models-forecasting-pipeline-wrapper-base-forecastingpipelinewrapperbase-rolling-forecast) and the [Forecasting away from training data notebook](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/automl-with-azureml/forecasting-forecast-function/auto-ml-forecasting-function.ipynb).
316
+
317
+
### Prediction into the future
298
318
299
319
The [forecast_quantiles()](/python/api/azureml-train-automl-client/azureml.train.automl.model_proxy.modelproxy#forecast-quantiles-x-values--typing-any--y-values--typing-union-typing-any--nonetype----none--forecast-destination--typing-union-typing-any--nonetype----none--ignore-data-errors--bool---false-----azureml-data-abstract-dataset-abstractdataset) function allows specifications of when predictions should start, unlike the `predict()` method, which is typically used for classification and regression tasks. The forecast_quantiles() method by default generates a point forecast or a mean/median forecast which doesn't have a cone of uncertainty around it. Learn more in the [Forecasting away from training data notebook](https://github.com/Azure/azureml-examples/blob/main/v1/python-sdk/tutorials/automl-with-azureml/forecasting-forecast-function/auto-ml-forecasting-function.ipynb).
0 commit comments