Skip to content

Commit b14e897

Browse files
committed
PR review fixes
1 parent 5afb090 commit b14e897

16 files changed

+14
-14
lines changed

articles/data-factory/apply-dataops.md

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -34,15 +34,15 @@ Specifically, once you bring your own GitHub or Azure DevOps repository into dat
3434

3535
All artifacts in Azure Data Factory, whether they're pipelines, linked services, triggers, etc. have corresponding “code” representations in JSON behind the visual UI integration. These artifacts act in compliance with [Azure Resource Manager templates](/azure-resource-manager/templates/overview.md) standards. You can find the code by clicking on the bracket icon on the top right of the canvas. Sample JSON “code” would look like this:
3636

37-
:::image type="content" source="media/applying-dataops/view-json-button.png" alt-text="Screenshot showing the View JSON button on the pipeline UI.":::
37+
:::image type="content" source="media/apply-dataops/view-json-button.png" alt-text="Screenshot showing the View JSON button on the pipeline UI.":::
3838

39-
:::image type="content" source="media/applying-dataops/json-example.png" alt-text="Screenshot showing example JSON for a pipeline.":::
39+
:::image type="content" source="media/apply-dataops/json-example.png" alt-text="Screenshot showing example JSON for a pipeline.":::
4040

4141
### Live mode and Git version control
4242

4343
Every factory has one single source of truth: pipelines, linked services, and trigger definitions stored within the service. This source of truth is what the pipeline runs execute and what determines the behaviors of triggers. If you are in live mode, every time you publish, you directly modify the single source of truth. The following image shows what the **Publish All** button looks like in live mode.
4444

45-
:::image type="content" source="media/applying-dataops/publish-button-live-mode.png" alt-text="Screenshot showing the Publish All button in live mode.":::
45+
:::image type="content" source="media/apply-dataops/publish-button-live-mode.png" alt-text="Screenshot showing the Publish All button in live mode.":::
4646

4747
Live mode can be convenient for single person working on side projects, as it allows developers to see immediate effects of their code changes. However, it's discouraged for a team of developers working on production-level work projects. The dangers include fat fingers, accidental deletions of critical resources, publishing of untested codes, etc., just to name a few.
4848
When working on mission critical projects and platforms, consider bringing in a Git repository and use the Git mode in data factory to streamline the development process. [Version control](source-control.md#version-control) and gated check-in capabilities of the Git mode helps you prevent most, if not all, of the accidents associated with touching live mode directly.
@@ -60,7 +60,7 @@ When you create a new data factory from the Azure portal, the default Git repo i
6060

6161
From the Azure portal, select the repo type and enter the repo and branch names to create a new factory natively integrated with Git.
6262

63-
:::image type="content" source="media/applying-dataops/create-data-factory-configure-git.png" alt-text="Screenshot showing the Create Azure Data Factory UI with the Git configuration settings displayed.":::
63+
:::image type="content" source="media/apply-dataops/create-data-factory-configure-git.png" alt-text="Screenshot showing the Create Azure Data Factory UI with the Git configuration settings displayed.":::
6464

6565
#### Enforcing use of Git with Azure Policy in your organization
6666

@@ -70,11 +70,11 @@ The use of Git in your Azure Data Factory projects is a highly recommended best
7070

7171
After you create your data factory, you can also connect to your repo through the Azure Data Factory Studio. In the **Manage** tab, you'll see the option to configure your repo and repo settings.
7272

73-
:::image type="content" lightbox="media/applying-dataops/data-factory-studio-git-configuration.png" source="media/applying-dataops/data-factory-studio-git-configuration.png" alt-text="Screenshot showing the Azure Data Factory Studio on the Manage tab with the Git Configuration section selected.":::
73+
:::image type="content" lightbox="media/apply-dataops/data-factory-studio-git-configuration.png" source="media/apply-dataops/data-factory-studio-git-configuration.png" alt-text="Screenshot showing the Azure Data Factory Studio on the Manage tab with the Git Configuration section selected.":::
7474

7575
Through a guided process, you're directed through a series of steps to help you easily configure and connect to your repository of choice. Once fully set up, you can start to work collaboratively and save your resources to your repo.
7676

77-
:::image type="content" source="media/applying-dataops/configure-repository.png" alt-text="Screenshot showing the repository configuration page.":::
77+
:::image type="content" source="media/apply-dataops/configure-repository.png" alt-text="Screenshot showing the repository configuration page.":::
7878

7979
### Continuous integration and continuous delivery (CI/CD)
8080

@@ -154,7 +154,7 @@ To get started with the [Azure Data Factory utilities npm package](https://www.n
154154

155155
After you've merged your branch back to the main collaboration branch in your Git repository, you can manually publish your changes to the live Azure Data Factory service. The service provides UI control over publishing from non-development factories with the **Disable publish (from ADF Studio)** option.
156156

157-
:::image type="content" source="media/applying-dataops/disable-publish-option.png" alt-text="Screenshot showing the Git repository edit page and the Disable publish (from ADF Studio) button.":::
157+
:::image type="content" source="media/apply-dataops/disable-publish-option.png" alt-text="Screenshot showing the Git repository edit page and the Disable publish (from ADF Studio) button.":::
158158

159159
### Selective deployment
160160

@@ -168,11 +168,11 @@ Once you've cherry picked the changes and merged to the main collaboration pipel
168168

169169
Unit testing is an important part of the process of developing new pipelines or editing existing data factory artifacts, which focuses on testing components of the code. Data Factory allows for individual unit testing at both the pipeline and data flow artifact level by using the pipeline [debug feature](iterative-development-debugging.md?tabs=data-factory#debugging-a-pipeline).
170170

171-
:::image type="content" lightbox="media/applying-dataops/pipeline-debugging.png" source="media/applying-dataops/pipeline-debugging.png" alt-text="Screenshot showing the pipeline editor canvas with the debug option.":::
171+
:::image type="content" lightbox="media/apply-dataops/pipeline-debugging.png" source="media/apply-dataops/pipeline-debugging.png" alt-text="Screenshot showing the pipeline editor canvas with the debug option.":::
172172

173173
When developing data flows, you'll be able to gain insights into each individual transformation and code change by using the [data preview feature](concepts-data-flow-debug-mode.md?tabs=data-factory) to achieve unit testing before deploying your changes to production.
174174

175-
:::image type="content" lightbox="media/applying-dataops/data-preview-feature.png" source="media/applying-dataops/data-preview-feature.png" alt-text="Screenshot showing the data preview feature.":::
175+
:::image type="content" lightbox="media/apply-dataops/data-preview-feature.png" source="media/apply-dataops/data-preview-feature.png" alt-text="Screenshot showing the data preview feature.":::
176176

177177
The service provides live and interactive feedback of your pipeline activities in the UI when debugging and unit testing in Azure Data Factory.
178178

@@ -186,7 +186,7 @@ Customers can also run **TEST** pipelines with **PowerShell** or **AZ CLI** as p
186186

187187
A key strength of data factory lies in its parameterization of data sets. This feature empowers customers to run same pipelines with different data sets to make sure their new development meets all source and destination requirements.
188188

189-
:::image type="content" source="media/applying-dataops/test-explorer.png" alt-text="Screenshot showing the Test Explorer for Azure Data Factory.":::
189+
:::image type="content" source="media/apply-dataops/test-explorer.png" alt-text="Screenshot showing the Test Explorer for Azure Data Factory.":::
190190

191191
### Other CI/CD frameworks for Azure Data Factory
192192

@@ -196,21 +196,21 @@ As described previously, built-in Git integration is available natively through
196196

197197
An important aspect of effective DataOps is data governance. For data integration ETL tools, providing data lineage and artifact relationships can provide important information for a data engineer to understand the impact of downstream changes. Data factory provides built-in related artifact views that constitute your factory implementation.
198198

199-
:::image type="content" source="media/applying-dataops/related-artifacts.png" alt-text="Screenshot showing data factory related artifacts for a sample dataset.":::
199+
:::image type="content" source="media/apply-dataops/related-artifacts.png" alt-text="Screenshot showing data factory related artifacts for a sample dataset.":::
200200

201201
Native integration with Microsoft Purview further provides lineage, impact analysis, and data cataloging.
202202

203203
[Microsoft Purview](https://azure.microsoft.com/products/purview/) provides a unified data governance solution to help manage and govern your on-premises, multicloud, and software as a service (SaaS) data. It allows you to easily create a holistic, up-to-date map of your data landscape with automated data discovery, sensitive data classification, and end-to-end data lineage. These features enable data consumers to access valuable, trustworthy data management.
204204

205-
:::image type="content" source="media/applying-dataops/data-lineage.png" alt-text="Screenshot showing the data lineage tracking possible with Microsoft Purview.":::
205+
:::image type="content" source="media/apply-dataops/data-lineage.png" alt-text="Screenshot showing the data lineage tracking possible with Microsoft Purview.":::
206206

207207
With native integration into your Purview Data Catalog, data factory enables easy search and discovery of data assets to use in your data integration pipelines across the full breadth of your organization’s data estate.
208208

209-
:::image type="content" lightbox="media/applying-dataops/purview-data-catalog.png" source="media/applying-dataops/purview-data-catalog.png" alt-text="Screenshot showing the Microsoft Purview Data Catalog.":::
209+
:::image type="content" lightbox="media/apply-dataops/purview-data-catalog.png" source="media/apply-dataops/purview-data-catalog.png" alt-text="Screenshot showing the Microsoft Purview Data Catalog.":::
210210

211211
You can use the main search bar from the Azure Data Factory Studio to find data assets in your Purview catalog.
212212

213-
:::image type="content" lightbox="media/applying-dataops/purview-search.png" source="media/applying-dataops/purview-search.png" alt-text="Screenshot showing Purview results from a search in the Azure Data Factory Studio search bar.":::
213+
:::image type="content" lightbox="media/apply-dataops/purview-search.png" source="media/apply-dataops/purview-search.png" alt-text="Screenshot showing Purview results from a search in the Azure Data Factory Studio search bar.":::
214214

215215
## Next steps
216216

0 commit comments

Comments
 (0)