Skip to content

Commit be8cb3f

Browse files
authored
Merge pull request #105532 from nibaccam/patch-3
V Net | parameter settings
2 parents ef078b7 + c6e5831 commit be8cb3f

File tree

1 file changed

+6
-3
lines changed

1 file changed

+6
-3
lines changed

articles/machine-learning/how-to-create-register-datasets.md

Lines changed: 6 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -74,7 +74,7 @@ To create datasets from an [Azure datastore](how-to-access-data.md) by using the
7474

7575
You can create TabularDatasets through the SDK or by using Azure Machine Learning studio.
7676

77-
Use the [`from_delimited_files()`](https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.tabulardatasetfactory?view=azure-ml-py#from-delimited-files-path--validate-true--include-path-false--infer-column-types-true--set-column-types-none--separator------header-true--partition-format-none-) method on the `TabularDatasetFactory` class to read files in .csv or .tsv format, and to create an unregistered TabularDataset. If you're reading from multiple files, results will be aggregated into one tabular representation.
77+
Use the [`from_delimited_files()`](https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.tabulardatasetfactory?view=azure-ml-py#from-delimited-files-path--validate-true--include-path-false--infer-column-types-true--set-column-types-none--separator------header-true--partition-format-none-) method on the `TabularDatasetFactory` class to read files in .csv or .tsv format, and to create an unregistered TabularDataset. If you're reading from multiple files, results will be aggregated into one tabular representation.
7878

7979
```Python
8080
from azureml.core import Workspace, Datastore, Dataset
@@ -94,7 +94,10 @@ datastore_paths = [(datastore, 'ather/2018/11.csv'),
9494
weather_ds = Dataset.Tabular.from_delimited_files(path=datastore_paths)
9595
```
9696

97-
By default, when you create a TabularDataset, column data types are inferred automatically. If the inferred types don't match your expectations, you can specify column types by using the following code. You can also [learn more about supported data types](https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.datatype?view=azure-ml-py).
97+
By default, when you create a TabularDataset, column data types are inferred automatically. If the inferred types don't match your expectations, you can specify column types by using the following code. If your storage is behind a virtual network or firewall, include the parameters `validate=False` and `infer_column_types=False` in your `from_delimited_files()` method. This bypasses the initial validation check and ensures that you can create your dataset from these secure files. You can also [learn more about supported data types](https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.datatype?view=azure-ml-py).
98+
99+
> [!NOTE]
100+
>The parameter `infer_column_type` is only applicable for datasets created from delimited files.
98101
99102
```Python
100103
from azureml.data.dataset_factory import DataType
@@ -147,7 +150,7 @@ data_slice = dataset.time_recent(timedelta(weeks=1, days=1))
147150

148151
#### Create a FileDataset
149152

150-
Use the [`from_files()`](https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.filedatasetfactory?view=azure-ml-py#from-files-path--validate-true-) method on the `FileDatasetFactory` class to load files in any format and to create an unregistered FileDataset:
153+
Use the [`from_files()`](https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.filedatasetfactory?view=azure-ml-py#from-files-path--validate-true-) method on the `FileDatasetFactory` class to load files in any format and to create an unregistered FileDataset. If your storage is behind a a virtual network or firewall, set the parameter `validate =False` in your `from_files()` method. This bypasses the initial validation step, and ensures that you can create your dataset from these secure files.
151154

152155
```Python
153156
# create a FileDataset pointing to files in 'animals' folder and its subfolders recursively

0 commit comments

Comments
 (0)