You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
:::image type="content" source="./media/how-to-use-batch-endpoints-studio/job-setting-batch-scoring.png" alt-text="Screenshot of using the deployment to submit a batch job.":::
512
512
513
513
1. Select __Next__.
514
-
1. On __Select data source__, select the data input you want to use. For this example, select __Datastore__ and in the section __Path__ enter the full URL `https://pipelinedata.blob.core.windows.net/sampledata/mnist`. Notice that this only works because the given path has public access enabled. In general, you'll need to register the data source as a __Datastore__. See [Accessing data from batch endpoints jobs](how-to-access-data-batch-endpoints-jobs.md) for details.
514
+
1. On __Select data source__, select the data input you want to use. For this example, select __Datastore__ and in the section __Path__ enter the full URL `https://azuremlexampledata.blob.core.windows.net/data/mnist/sample`. Notice that this only works because the given path has public access enabled. In general, you'll need to register the data source as a __Datastore__. See [Accessing data from batch endpoints jobs](how-to-access-data-batch-endpoints-jobs.md) for details.
515
515
516
516
:::image type="content" source="./media/how-to-use-batch-endpoints-studio/select-datastore-job.png" alt-text="Screenshot of selecting datastore as an input option.":::
517
517
@@ -541,38 +541,53 @@ Use `output-path` to configure any folder in an Azure Machine Learning registere
541
541
542
542
# [Python](#tab/python)
543
543
544
-
Use `output_path` to configure any folder in an Azure Machine Learning registered datastore. The syntax for the `--output-path` is the same as `--input` when you're specifying a folder, that is, `azureml://datastores/<datastore-name>/paths/<path-on-datastore>/`. Use `output_file_name=<your-file-name>` to configure a new output file name.
544
+
Use `params_override` to configure any folder in an Azure Machine Learning registered data store. Only registered data stores are supported as output paths. In this example we will use the default data store:
545
+
546
+
```python
547
+
batch_ds = ml_client.datastores.get_default()
548
+
```
549
+
550
+
Once you identified the data store you want to use, configure the output as follows:
1. Navigate to the __Endpoints__ tab on the side menu.
570
+
562
571
1. Select the tab __Batch endpoints__.
572
+
563
573
1. Select the batch endpoint you just created.
574
+
564
575
1. Select __Create job__.
565
576
566
577
:::image type="content" source="./media/how-to-use-batch-endpoints-studio/create-batch-job.png" alt-text="Screenshot of the create job option to start batch scoring.":::
567
578
568
579
1. On __Deployment__, select the deployment you want to execute.
580
+
569
581
1. Select __Next__.
582
+
570
583
1. Check the option __Override deployment settings__.
571
584
572
585
:::image type="content" source="./media/how-to-use-batch-endpoints-studio/overwrite-setting.png" alt-text="Screenshot of the overwrite setting when starting a batch job.":::
573
586
574
587
1. You can now configure __Output file name__ and some extra properties of the deployment execution. Just this execution will be affected.
588
+
575
589
1. On __Select data source__, select the data input you want to use.
590
+
576
591
1. On __Configure output location__, check the option __Enable output configuration__.
577
592
578
593
:::image type="content" source="./media/how-to-use-batch-endpoints-studio/configure-output-location.png" alt-text="Screenshot of optionally configuring output location.":::
@@ -604,7 +619,9 @@ Some settings can be overwritten when invoke to make best use of the compute res
0 commit comments