You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
## Fetch data for running experiment on remote compute
101
102
@@ -142,30 +143,30 @@ There are several options that you can use to configure your automated machine l
142
143
143
144
Some examples include:
144
145
145
-
1. Classification experiment using AUC weighted as the primary metric with experiment timeout minutes set to 30 minutes and2 cross-validation folds.
146
-
147
-
```python
148
-
automl_classifier=AutoMLConfig(
149
-
task='classification',
150
-
primary_metric='AUC_weighted',
151
-
experiment_timeout_minutes=30,
152
-
blacklist_models=['XGBoostClassifier'],
153
-
training_data=train_data,
154
-
label_column_name=label,
155
-
n_cross_validations=2)
156
-
```
157
-
2. Below is an example of a regression experiment set to end after 60 minutes with five validation cross folds.
158
-
159
-
```python
160
-
automl_regressor= AutoMLConfig(
161
-
task='regression',
162
-
experiment_timeout_minutes=60,
163
-
whitelist_models=['kNN regressor'],
164
-
primary_metric='r2_score',
165
-
training_data=train_data,
166
-
label_column_name=label,
167
-
n_cross_validations=5)
168
-
```
146
+
1. Classification experiment using AUC weighted as the primary metric with experiment timeout minutes set to 30 minutes and 2 cross-validation folds.
147
+
148
+
```python
149
+
automl_classifier=AutoMLConfig(
150
+
task='classification',
151
+
primary_metric='AUC_weighted',
152
+
experiment_timeout_minutes=30,
153
+
blacklist_models=['XGBoostClassifier'],
154
+
training_data=train_data,
155
+
label_column_name=label,
156
+
n_cross_validations=2)
157
+
```
158
+
2. Below is an example of a regression experiment set to end after 60 minutes with five validation cross folds.
159
+
160
+
```python
161
+
automl_regressor = AutoMLConfig(
162
+
task='regression',
163
+
experiment_timeout_minutes=60,
164
+
whitelist_models=['kNN regressor'],
165
+
primary_metric='r2_score',
166
+
training_data=train_data,
167
+
label_column_name=label,
168
+
n_cross_validations=5)
169
+
```
169
170
170
171
The three different `task` parameter values (the third task-type is `forecasting`, and uses a similar algorithm pool as `regression` tasks) determine the list of models to apply. Use the `whitelist` or `blacklist` parameters to further modify iterations with the available models to include or exclude. The list of supported models can be found on [SupportedModels Class](https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels) for ([Classification](https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.classification), [Forecasting](https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.forecasting), and [Regression](https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.regression)).
0 commit comments