Skip to content

Mishuni/ViT_Inversion

Repository files navigation

ViT_Inversion

Settings

$ pip install -r requirements.txt

Load the pretrained moco models for GradVit (gv)

Run Inversion Attacks on the ViT models.

$ python run_attack_imagenet.py --arch vit -a gv --lr 0.1 --max-iters 20000 -b 8 -g 1 
$ python run_attack_imagenet.py --arch vit -a gi --lr 0.1 --max-iters 20000 -b 8 -g 1 
$ python run_attack_imagenet.py --arch vit -a idlg --lr 0.1 --max-iters 20000 -b 8 -g 1 
$ python run_attack_imagenet.py --arch vit -a dlg --lr 1.0 --max-iters 20000 -b 8 -g 1
$ python run_attack_imagenet.py --arch vit -a gs --lr 1.0 --max-iters 20000 -b 8 -g 1
$ python run_attack_imagenet.py --arch vit -a cpl --lr 1.0 --max-iters 20000 -b 8 -g 1

A list of attacks we can do

attack mode 'dlg', 'idlg', 'gs', 'cpl', 'gi', 'gv'

  • 'Deep Leakage from Gradients' [DLG]
  • iDLG: Improved Deep Leakage from Gradients [iDLG]
  • See through Gradients: Image Batch Recovery via GradInversion [gi]
  • Inverting Gradients - How easy is it to break privacy in federated learning? [gs]
  • GradViT: Gradient Inversion of Vision Transformers [gv]

A list of model architecture we can do

  • ResNet18
  • ResNet50
  • LeNet
  • ConvNet
  • Vision Transformer

About

Inversion Attacks with various model architectures including ViT

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages