$ pip install -r requirements.txt
- download
moco_v2_200ep_pretrain.pth.tar
file on the link [(https://huggingface.co/sotaBrewer824/x4ssl/tree/main)] and move it on the demodata folder.
$ python run_attack_imagenet.py --arch vit -a gv --lr 0.1 --max-iters 20000 -b 8 -g 1
$ python run_attack_imagenet.py --arch vit -a gi --lr 0.1 --max-iters 20000 -b 8 -g 1
$ python run_attack_imagenet.py --arch vit -a idlg --lr 0.1 --max-iters 20000 -b 8 -g 1
$ python run_attack_imagenet.py --arch vit -a dlg --lr 1.0 --max-iters 20000 -b 8 -g 1
$ python run_attack_imagenet.py --arch vit -a gs --lr 1.0 --max-iters 20000 -b 8 -g 1
$ python run_attack_imagenet.py --arch vit -a cpl --lr 1.0 --max-iters 20000 -b 8 -g 1
attack mode 'dlg', 'idlg', 'gs', 'cpl', 'gi', 'gv'
- 'Deep Leakage from Gradients' [DLG]
- iDLG: Improved Deep Leakage from Gradients [iDLG]
- See through Gradients: Image Batch Recovery via GradInversion [gi]
- Inverting Gradients - How easy is it to break privacy in federated learning? [gs]
- GradViT: Gradient Inversion of Vision Transformers [gv]
- ResNet18
- ResNet50
- LeNet
- ConvNet
- Vision Transformer