|
1 | | -from transform import to_boolean, get_nested_value |
| 1 | +import unittest |
| 2 | + |
| 3 | +import pandas as pd |
| 4 | + |
| 5 | +from transform import ( |
| 6 | + to_boolean, |
| 7 | + get_nested_value, |
| 8 | + to_float, |
| 9 | + get_safe_value, |
| 10 | + get_safe_float, |
| 11 | +) |
2 | 12 |
|
3 | 13 |
|
4 | 14 | def test_to_boolean(): |
@@ -60,3 +70,87 @@ def test_get_nested_value(): |
60 | 70 | # Test case 9: Non-dictionary data |
61 | 71 | assert get_nested_value("not a dict", ["a", "b", "c"]) is None |
62 | 72 | assert get_nested_value("not a dict", ["a", "b", "c"], []) == [] |
| 73 | + |
| 74 | + |
| 75 | +class TestToFloat(unittest.TestCase): |
| 76 | + def test_valid_float(self): |
| 77 | + self.assertEqual(to_float("3.14"), 3.14) |
| 78 | + self.assertEqual(to_float(2.5), 2.5) |
| 79 | + self.assertEqual(to_float("0"), 0.0) |
| 80 | + self.assertEqual(to_float(0), 0.0) |
| 81 | + |
| 82 | + def test_invalid_float(self): |
| 83 | + self.assertIsNone(to_float("abc")) |
| 84 | + self.assertIsNone(to_float(None)) |
| 85 | + self.assertIsNone(to_float("")) |
| 86 | + |
| 87 | + def test_default_value(self): |
| 88 | + self.assertEqual(to_float("abc", default_value=1.23), 1.23) |
| 89 | + self.assertEqual(to_float(None, default_value=4.56), 4.56) |
| 90 | + self.assertEqual(to_float("", default_value=7.89), 7.89) |
| 91 | + |
| 92 | + |
| 93 | +class TestGetSafeValue(unittest.TestCase): |
| 94 | + def test_valid_value(self): |
| 95 | + row = {"name": " Alice "} |
| 96 | + self.assertEqual(get_safe_value(row, "name"), "Alice") |
| 97 | + |
| 98 | + def test_missing_column(self): |
| 99 | + row = {"age": 30} |
| 100 | + self.assertIsNone(get_safe_value(row, "name")) |
| 101 | + |
| 102 | + def test_empty_string(self): |
| 103 | + row = {"name": " "} |
| 104 | + self.assertIsNone(get_safe_value(row, "name")) |
| 105 | + |
| 106 | + def test_nan_value(self): |
| 107 | + row = {"name": pd.NA} |
| 108 | + self.assertIsNone(get_safe_value(row, "name")) |
| 109 | + row = {"name": float("nan")} |
| 110 | + self.assertIsNone(get_safe_value(row, "name")) |
| 111 | + |
| 112 | + def test_default_value(self): |
| 113 | + row = {"name": ""} |
| 114 | + self.assertEqual( |
| 115 | + get_safe_value(row, "name", default_value="default"), "default" |
| 116 | + ) |
| 117 | + |
| 118 | + |
| 119 | +class TestGetSafeFloat(unittest.TestCase): |
| 120 | + def test_valid_float(self): |
| 121 | + row = {"value": "3.14"} |
| 122 | + self.assertEqual(get_safe_float(row, "value"), 3.14) |
| 123 | + row = {"value": 2.5} |
| 124 | + self.assertEqual(get_safe_float(row, "value"), 2.5) |
| 125 | + row = {"value": "0"} |
| 126 | + self.assertEqual(get_safe_float(row, "value"), 0.0) |
| 127 | + row = {"value": 0} |
| 128 | + self.assertEqual(get_safe_float(row, "value"), 0.0) |
| 129 | + |
| 130 | + def test_missing_column(self): |
| 131 | + row = {"other": 1.23} |
| 132 | + self.assertIsNone(get_safe_float(row, "value")) |
| 133 | + |
| 134 | + def test_empty_string(self): |
| 135 | + row = {"value": " "} |
| 136 | + self.assertIsNone(get_safe_float(row, "value")) |
| 137 | + |
| 138 | + def test_nan_value(self): |
| 139 | + row = {"value": pd.NA} |
| 140 | + self.assertIsNone(get_safe_float(row, "value")) |
| 141 | + row = {"value": float("nan")} |
| 142 | + self.assertIsNone(get_safe_float(row, "value")) |
| 143 | + |
| 144 | + def test_invalid_float(self): |
| 145 | + row = {"value": "abc"} |
| 146 | + self.assertIsNone(get_safe_float(row, "value")) |
| 147 | + row = {"value": None} |
| 148 | + self.assertIsNone(get_safe_float(row, "value")) |
| 149 | + |
| 150 | + def test_default_value(self): |
| 151 | + row = {"value": ""} |
| 152 | + self.assertEqual(get_safe_float(row, "value", default_value=1.23), 1.23) |
| 153 | + row = {"value": "abc"} |
| 154 | + self.assertEqual(get_safe_float(row, "value", default_value=4.56), 4.56) |
| 155 | + row = {"value": None} |
| 156 | + self.assertEqual(get_safe_float(row, "value", default_value=7.89), 7.89) |
0 commit comments