Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
91 changes: 16 additions & 75 deletions llmc/models/internvl2.py
Original file line number Diff line number Diff line change
Expand Up @@ -129,21 +129,25 @@ def build_model(self):
self.vlm_model.img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)

def batch_process(self, img_qas):
if len(img_qas) == 1:
return self.single_process(img_qas[0])
tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
questions = []
pixel_values_list = []
num_patches_list = []
for idx in range(len(img_qas)):
img_path = img_qas[idx]['img']
pixel_values = load_image(img_path, max_num=12).to(
next(self.vlm_model.parameters()).dtype
)
pixel_values_list.append(pixel_values)
num_patches_list.append(pixel_values.size(0))
questions.append(f"<image>\n{img_qas[idx]['question']}")
pixel_values = torch.cat(pixel_values_list, dim=0)
_num_patches_i = []
if img_path is not None:
if not isinstance(img_path, list):
img_path = [img_path]
for img_idx in range(len(img_path)):
pixel_values = load_image(img_path[img_idx], max_num=12).to(
next(self.vlm_model.parameters()).dtype
)
pixel_values_list.append(pixel_values)
_num_patches_i.append(pixel_values.size(0))
num_patches_list.append(_num_patches_i)
questions.append(img_qas[idx]['question'])
pixel_values = torch.cat(pixel_values_list, dim=0) if len(pixel_values_list) > 0 else None
generation_config = dict()

IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
Expand All @@ -163,12 +167,10 @@ def batch_process(self, img_qas):
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
query = template.get_prompt()
image_tokens = (IMG_START_TOKEN +
IMG_CONTEXT_TOKEN * self.vlm_model.num_image_token * num_patches +
IMG_END_TOKEN)
query = query.replace('<image>', image_tokens, 1)
for _num_patches_i in num_patches:
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.vlm_model.num_image_token * _num_patches_i + IMG_END_TOKEN # noqa
query = query.replace('<image>', image_tokens, 1)
queries.append(query)

tokenizer.padding_side = 'left'
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
input_ids = model_inputs['input_ids']
Expand All @@ -183,64 +185,3 @@ def batch_process(self, img_qas):
**generation_config
}
return inputs

def single_process(self, img_qa):
tokenizer = AutoTokenizer.from_pretrained(self.model_path, trust_remote_code=True)
num_patches_list = None
pixel_values_list = []
if img_qa['img'] is not None:
if isinstance(img_qa['img'], list):
num_patches_list = []
for img_idx in range(len(img_qa['img'])):
pixel_values = load_image(img_qa['img'][img_idx], max_num=12).to(
next(self.vlm_model.parameters()).dtype
)
pixel_values_list.append(pixel_values)
num_patches_list.append(pixel_values.size(0))
pixel_values = torch.cat(pixel_values_list, dim=0)
else:
pixel_values = load_image(img_qa['img'], max_num=12).to(
next(self.vlm_model.parameters()).dtype
)
else:
pixel_values = None
question = img_qa['question']
if pixel_values is not None and '<image>' not in question:
question = '<image>\n' + question
if num_patches_list is None:
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
generation_config = dict()

IMG_CONTEXT_TOKEN = '<IMG_CONTEXT>'
IMG_START_TOKEN = '<img>'
IMG_END_TOKEN = '</img>'
try:
template = get_conv_template(self.vlm_model.template)
except Exception:
raise Exception(
'InternLM2 conversation.py not be found. '
'Please copy it from model path to llmc/models.'
)
template.system_message = self.vlm_model.system_message
template.append_message(template.roles[0], question)
template.append_message(template.roles[1], None)
query = template.get_prompt()
for num_patches in num_patches_list:
image_tokens = (IMG_START_TOKEN +
IMG_CONTEXT_TOKEN * self.vlm_model.num_image_token * num_patches +
IMG_END_TOKEN)
query = query.replace('<image>', image_tokens, 1)

model_inputs = tokenizer(query, return_tensors='pt')
input_ids = model_inputs['input_ids']
attention_mask = model_inputs['attention_mask']
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
generation_config['eos_token_id'] = eos_token_id

inputs = {
'pixel_values': pixel_values,
'input_ids': input_ids,
'attention_mask': attention_mask,
**generation_config
}
return inputs
Loading