Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion llmc/compression/quantization/base_blockwise_quantization.py
Original file line number Diff line number Diff line change
Expand Up @@ -375,7 +375,9 @@ def block_forward(self, block, input_data=None):
self.input['kwargs'][i][key] = \
self.input['kwargs'][i][key].to(device=next(block.parameters()).device)
with torch.no_grad():
out = block(input_data[i], **self.input['kwargs'][i])[0]
out = block(input_data[i], **self.input['kwargs'][i])
if isinstance(out, tuple):
out = out[0]
output.append(out)
return output

Expand Down
40 changes: 40 additions & 0 deletions llmc/models/internvl2.py
Original file line number Diff line number Diff line change
Expand Up @@ -214,3 +214,43 @@ def batch_process(self, img_qas, calib_or_eval='eval'):
**generation_config
}
return inputs

def find_blocks(self, modality='language'):
if modality == 'language':
self.blocks = self.model.model.layers
elif modality == 'vision':
self.blocks = self.vision_model.encoder.layers

def get_vision_subsets_in_block(self, block):
return [
{
'layers': {'attn.qkv': block.attn.qkv},
'prev_op': [block.norm1],
'input': ['attn.qkv'],
'inspect': block.attn,
'has_kwargs': False,
},
{
'layers': {'attn.proj': block.attn.proj},
'prev_op': [block.attn.qkv],
'input': ['attn.proj'],
'inspect': block.attn.proj,
'has_kwargs': False,
},
{
'layers': {'mlp.fc1': block.mlp.fc1},
'prev_op': [block.norm2],
'input': ['mlp.fc1'],
'inspect': block.mlp.fc1,
'has_kwargs': False,
'is_mlp': True,
},
{
'layers': {'mlp.fc2': block.mlp.fc2},
'prev_op': [block.mlp.fc1],
'input': ['mlp.fc2'],
'inspect': block.mlp.fc2,
'has_kwargs': False,
'is_mlp': True,
},
]
68 changes: 68 additions & 0 deletions llmc/models/qwen2vl.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,6 @@
import inspect

import torch.nn as nn
from loguru import logger
from transformers import AutoConfig, AutoProcessor

Expand Down Expand Up @@ -111,3 +114,68 @@ def batch_process(self, img_qas, calib_or_eval='eval'):
return_tensors='pt',
).to(next(self.vlm_model.parameters()).dtype)
return inputs

def find_blocks(self, modality='language'):
if modality == 'language':
self.blocks = self.model.model.layers
elif modality == 'vision':
self.blocks = self.vision_model.blocks

def get_vision_subsets_in_block(self, block):
return [
{
'layers': {
'attn.qkv': block.attn.qkv,
},
'prev_op': [block.norm1],
'input':['attn.qkv'],
'inspect': block.attn,
'has_kwargs': True,
},
{
'layers': {'attn.proj': block.attn.proj},
'prev_op': [block.attn.qkv],
'input': ['attn.proj'],
'inspect': block.attn.proj,
'has_kwargs': False,
},
{
'layers': {'mlp.fc1': block.mlp.fc1},
'prev_op': [block.norm2],
'input': ['mlp.fc1'],
'inspect': block.mlp.fc1,
'has_kwargs': False,
'is_mlp': True,
},
{
'layers': {'mlp.fc2': block.mlp.fc2},
'prev_op': [block.mlp.fc1],
'input': ['mlp.fc2'],
'inspect': block.mlp.fc2,
'has_kwargs': False,
'is_mlp': True,
},
]

def get_vision_catcher(self, first_block_input):

class Catcher(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
self.mlp = self.module.mlp
self.signature = inspect.signature(module.forward)

def forward(self, *args, **kwargs):
params = list(self.signature.parameters.keys())
for i, arg in enumerate(args):
if i > 0:
kwargs[params[i]] = arg
first_block_input['data'].append(args[0])
if 'output_router_logits' in kwargs:
assert kwargs['output_router_logits'] is False
kwargs.pop('output_router_logits')
first_block_input['kwargs'].append(kwargs)
raise ValueError

return Catcher
Loading