Conversation
Summary of ChangesHello @sufubao, I'm Gemini Code Assist1! I'm currently reviewing this pull request and will post my feedback shortly. In the meantime, here's a summary to help you and other reviewers quickly get up to speed! This pull request integrates the Qwen3next model into the LightLLM framework, enhancing its capability to support advanced model architectures. A significant part of this integration involves a sophisticated hybrid prefix caching mechanism and a refactored memory management system tailored to Qwen3next's unique linear attention and shared expert layers. The changes also introduce several high-performance Triton kernels to ensure efficient execution of these new model components, alongside general improvements to model loading parallelism. Highlights
Using Gemini Code AssistThe full guide for Gemini Code Assist can be found on our documentation page, here are some quick tips. Invoking Gemini You can request assistance from Gemini at any point by creating a comment using either
Customization To customize Gemini Code Assist for GitHub experience, repository maintainers can create a configuration file and/or provide a custom code review style guide (such as PEP-8 for Python) by creating and adding files to a Limitations & Feedback Gemini Code Assist may make mistakes. Please leave feedback on any instances where its feedback is incorrect or counter productive. You can react with 👍 and 👎 on @gemini-code-assist comments. If you're interested in giving your feedback about your experience with Gemini Code Assist for Github and other Google products, sign up here. You can also get AI-powered code generation, chat, as well as code reviews directly in the IDE at no cost with the Gemini Code Assist IDE Extension. Footnotes
|
There was a problem hiding this comment.
Code Review
This pull request introduces support for the Qwen3Next model, which appears to be a hybrid model using both standard and linear attention mechanisms. The changes are extensive, touching upon memory management, request management, prefix caching, and the core model inference logic. A significant part of the work is the introduction of a HybridRadixCache that caches not only the KV state but also the state buffers required for the linear attention layers. A specialized backend for Qwen3Next is also added to handle caching intermediate states during chunked prefilling. The refactoring of MemoryManager into a BaseAllocator is a good improvement for code structure.
My review has identified one critical issue related to model selection logic that needs to be addressed. I've also provided suggestions to improve performance and maintainability in the new complex components. Overall, this is a substantial and well-engineered contribution to support a new, complex model architecture.
79b6fe3 to
4af3ac5
Compare
30bde05 to
165ff09
Compare
4210ec1 to
f6ae38d
Compare
2019b3f to
b70e690
Compare
b70e690 to
206b170
Compare
Uh oh!
There was an error while loading. Please reload this page.