Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 17 additions & 0 deletions lightllm/server/router/model_infer/infer_batch.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,6 +106,23 @@ def free_a_req_mem(self, free_token_index: List, req: "InferReq", is_group_finis
self.radix_cache.dec_node_ref_counter(req.shared_kv_node)
req.shared_kv_node = None

# # save prompt cache kv buffer
# prompt_cache_token_id = list(self.radix_cache.root_node.children.values())[0].token_id_key
# print(f"prompt_cache_token_id : {prompt_cache_token_id}")
# if isinstance(self.radix_cache.mem_manager.kv_buffer, list):
# kv_buffer_list = []
# for i in range(len(self.radix_cache.mem_manager.kv_buffer)):
# kv_buffer_list.append(self.radix_cache.mem_manager.kv_buffer[i][:len(prompt_cache_token_id)])
# torch.save(
# kv_buffer_list,
# f"prompt_cache_rank_{dist.get_rank()}.pt"
# )
# else:
# torch.save(
# self.radix_cache.mem_manager.kv_buffer[:, :len(prompt_cache_token_id)],
# f"prompt_cache_rank_{dist.get_rank()}.pt"
# )

@torch.no_grad()
def filter(self, finished_request_ids: List[int]):
if len(finished_request_ids) == 0:
Expand Down
28 changes: 28 additions & 0 deletions lightllm/server/router/model_infer/mode_backend/base_backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,6 +212,9 @@ def init_model(self, kvargs):
else None
)

if "prompt_cache_kv_buffer" in model_cfg:
self.preload_prompt_cache_kv_buffer(model_cfg)

self.logger.info(f"loaded model class {self.model.__class__}")
self.init_custom()

Expand Down Expand Up @@ -256,3 +259,28 @@ def _init_reqs(self, reqs: List[Tuple], init_req_obj=True):
g_infer_state_lock.release()
req_ids = [e[0] for e in reqs]
return req_ids

def preload_prompt_cache_kv_buffer(self, model_cfg):
self.logger.info("Preload prompt cache kv buffer.")
cur_rank = dist.get_rank()
prompt_cache_kv_buffer_path = os.path.join(
self.weight_dir, model_cfg["prompt_cache_kv_buffer"][f"rank_{cur_rank}"]
)
prompt_cache_kv_buffer = torch.load(prompt_cache_kv_buffer_path, weights_only=True, map_location="cpu")
if isinstance(self.radix_cache.mem_manager.kv_buffer, list):
for i in range(len(self.radix_cache.mem_manager.kv_buffer)):
self.radix_cache.mem_manager.kv_buffer[i][: len(model_cfg["prompt_cache_token_ids"])].copy_(
prompt_cache_kv_buffer[i]
)
else:
self.radix_cache.mem_manager.kv_buffer[:, : len(model_cfg["prompt_cache_token_ids"])].copy_(
prompt_cache_kv_buffer
)
self.radix_cache.insert(
torch.tensor(model_cfg["prompt_cache_token_ids"], dtype=torch.int64, device="cpu"),
torch.tensor(range(len(model_cfg["prompt_cache_token_ids"])), dtype=torch.int32, device="cpu"),
)
self.radix_cache.mem_manager.mem_state[: len(model_cfg["prompt_cache_token_ids"])] = 1
self.radix_cache.match_prefix(
torch.tensor(model_cfg["prompt_cache_token_ids"], dtype=torch.int64, device="cpu"), update_refs=True
)