-
Notifications
You must be signed in to change notification settings - Fork 2
Linnan readme #67
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Linnan readme #67
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,258 @@ | ||
| # Diffusion Model Fine-tuning with Automodel Backend | ||
|
|
||
| Train diffusion models with distributed training support using NeMo Automodel and flow matching. | ||
|
|
||
| **Currently Supported:** Wan 2.1 Text-to-Video (1.3B and 14B models) | ||
|
|
||
| --- | ||
|
|
||
| ## Quick Start | ||
|
|
||
| ### 1. Docker Setup | ||
|
|
||
| ```bash | ||
| # Build image | ||
| docker build -f docker/Dockerfile.ci -t dfm-training . | ||
|
|
||
| # Run container | ||
| docker run --gpus all -it \ | ||
| -v $(pwd):/workspace \ | ||
| -v /path/to/data:/data \ | ||
| --ipc=host \ | ||
| --ulimit memlock=-1 \ | ||
| --ulimit stack=67108864 \ | ||
| dfm-training bash | ||
|
|
||
| # Inside container: Initialize submodules | ||
| export UV_PROJECT_ENVIRONMENT= | ||
| git submodule update --init --recursive 3rdparty/ | ||
| ``` | ||
|
|
||
| ### 2. Prepare Data | ||
|
|
||
| **Create video dataset:** | ||
| ``` | ||
| <your_video_folder>/ | ||
| ├── video1.mp4 | ||
| ├── video2.mp4 | ||
| └── meta.json | ||
| ``` | ||
|
|
||
| **meta.json format:** | ||
| ```json | ||
| [ | ||
| { | ||
| "file_name": "video1.mp4", | ||
| "width": 1280, | ||
| "height": 720, | ||
| "start_frame": 0, | ||
| "end_frame": 121, | ||
| "vila_caption": "A detailed description of the video content..." | ||
| } | ||
| ] | ||
| ``` | ||
|
|
||
| **Preprocess videos to .meta files:** | ||
|
|
||
| There are two preprocessing modes: | ||
|
|
||
| **Mode 1: Full video (recommended for training)** | ||
| ```bash | ||
| python dfm/src/automodel/utils/data/preprocess_resize.py \ | ||
| --mode video \ | ||
| --video_folder <your_video_folder> \ | ||
| --output_folder ./processed_meta \ | ||
| --model Wan-AI/Wan2.1-T2V-1.3B-Diffusers \ | ||
| --height 480 \ | ||
| --width 720 \ | ||
| --center-crop | ||
| ``` | ||
|
|
||
| **Mode 2: Extract frames (for frame-based training)** | ||
| ```bash | ||
| python dfm/src/automodel/utils/data/preprocess_resize.py \ | ||
| --mode frames \ | ||
| --num-frames 40 \ | ||
| --video_folder <your_video_folder> \ | ||
| --output_folder ./processed_frames \ | ||
| --model Wan-AI/Wan2.1-T2V-1.3B-Diffusers \ | ||
| --height 240 \ | ||
| --width 416 \ | ||
| --center-crop | ||
| ``` | ||
|
|
||
| **Key arguments:** | ||
| - `--mode`: `video` (full video) or `frames` (extract evenly-spaced frames) | ||
| - `--num-frames`: Number of frames to extract (only for `frames` mode) | ||
| - `--height/--width`: Target resolution | ||
| - `--center-crop`: Crop to exact size after aspect-preserving resize | ||
|
|
||
| **Preprocessing modes:** | ||
| - **`video` mode**: Processes entire video sequence, creates one `.meta` file per video | ||
| - **`frames` mode**: Extracts N evenly-spaced frames, creates one `.meta` file per frame (treated as 1-frame videos) | ||
|
|
||
| **Output:** Creates `.meta` files containing: | ||
| - Encoded video latents (normalized) | ||
| - Text embeddings (from UMT5) | ||
| - First frame as JPEG (video mode only) | ||
| - Metadata | ||
|
|
||
| ### 3. Train | ||
|
|
||
| **Single-node (8 GPUs):** | ||
| ```bash | ||
| export UV_PROJECT_ENVIRONMENT= | ||
|
|
||
| uv run --group automodel --with . \ | ||
| torchrun --nproc-per-node=8 \ | ||
| examples/automodel/finetune/finetune.py \ | ||
| -c examples/automodel/finetune/wan2_1_t2v_flow.yaml | ||
| ``` | ||
|
|
||
| **Multi-node with SLURM:** | ||
| ```bash | ||
| #!/bin/bash | ||
| #SBATCH -N 2 | ||
| #SBATCH --ntasks-per-node 1 | ||
| #SBATCH --gpus-per-node=8 | ||
| #SBATCH --exclusive | ||
|
|
||
| export MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) | ||
| export MASTER_PORT=29500 | ||
| export NUM_GPUS=8 | ||
|
|
||
| # Per-rank UV cache to avoid conflicts | ||
| unset UV_PROJECT_ENVIRONMENT | ||
| mkdir -p /opt/uv_cache/${SLURM_JOB_ID}_${SLURM_PROCID} | ||
| export UV_CACHE_DIR=/opt/uv_cache/${SLURM_JOB_ID}_${SLURM_PROCID} | ||
|
|
||
| uv run --group automodel --with . \ | ||
| torchrun \ | ||
| --nnodes=$SLURM_NNODES \ | ||
| --nproc-per-node=$NUM_GPUS \ | ||
| --rdzv_backend=c10d \ | ||
| --rdzv_endpoint=$MASTER_ADDR:$MASTER_PORT \ | ||
| examples/automodel/finetune/finetune.py \ | ||
| -c examples/automodel/finetune/wan2_1_t2v_flow_multinode.yaml | ||
| ``` | ||
|
|
||
| ### 4. Validate | ||
|
|
||
| ```bash | ||
| uv run --group automodel --with . \ | ||
| python examples/automodel/generate/wan_validate.py \ | ||
| --meta_folder <your_meta_folder> \ | ||
| --guidance_scale 5 \ | ||
| --checkpoint ./checkpoints/step_1000 \ | ||
| --num_samples 10 | ||
| ``` | ||
|
|
||
| **Note:** You can use `--checkpoint ./checkpoints/LATEST` to automatically use the most recent checkpoint. | ||
|
|
||
| --- | ||
|
|
||
| ## Configuration | ||
|
|
||
| ### Fine-tuning Config (`wan2_1_t2v_flow.yaml`) | ||
|
|
||
| ```yaml | ||
| model: | ||
| pretrained_model_name_or_path: Wan-AI/Wan2.1-T2V-1.3B-Diffusers | ||
|
|
||
| step_scheduler: | ||
| global_batch_size: 8 | ||
| local_batch_size: 1 | ||
| num_epochs: 10 | ||
| ckpt_every_steps: 100 | ||
|
|
||
| data: | ||
| dataloader: | ||
| meta_folder: "<your_processed_meta_folder>" | ||
| num_workers: 2 | ||
|
|
||
| optim: | ||
| learning_rate: 5e-6 | ||
|
|
||
| flow_matching: | ||
| timestep_sampling: "uniform" | ||
| flow_shift: 3.0 | ||
|
|
||
| fsdp: | ||
| dp_size: 8 # Single node: 8 GPUs | ||
|
|
||
| checkpoint: | ||
| enabled: true | ||
| checkpoint_dir: "./checkpoints" | ||
| ``` | ||
|
|
||
| ### Multi-node Config Differences | ||
|
|
||
| ```yaml | ||
| fsdp: | ||
| dp_size: 16 # 2 nodes × 8 GPUs | ||
| dp_replicate_size: 2 # Replicate across 2 nodes | ||
| ``` | ||
|
|
||
| ### Pretraining vs Fine-tuning | ||
|
|
||
| | Setting | Fine-tuning | Pretraining | | ||
| |---------|-------------|-------------| | ||
| | `learning_rate` | 5e-6 | 5e-5 | | ||
| | `weight_decay` | 0.01 | 0.1 | | ||
| | `flow_shift` | 3.0 | 2.5 | | ||
| | `logit_std` | 1.0 | 1.5 | | ||
| | Dataset size | 100s-1000s | 10K+ | | ||
|
|
||
| --- | ||
|
|
||
| ## Hardware Requirements | ||
|
|
||
| | Component | Minimum | Recommended | | ||
| |-----------|---------|-------------| | ||
| | GPU | A100 40GB | A100 80GB / H100 | | ||
| | GPUs | 4 | 8+ | | ||
| | RAM | 128 GB | 256 GB+ | | ||
| | Storage | 500 GB SSD | 2 TB NVMe | | ||
|
|
||
| --- | ||
|
|
||
| ## Features | ||
|
|
||
| - ✅ **Flow Matching**: Pure flow matching training | ||
| - ✅ **Distributed**: FSDP2 + Tensor Parallelism | ||
| - ✅ **Mixed Precision**: BF16 by default | ||
| - ✅ **WandB**: Automatic logging | ||
| - ✅ **Checkpointing**: consolidated, and sharded formats | ||
| - ✅ **Multi-node**: SLURM and torchrun support | ||
|
|
||
| --- | ||
|
|
||
| ## Supported Models | ||
|
|
||
| | Model | Parameters | Parallelization | Status | | ||
| |-------|------------|-----------------|--------| | ||
| | Wan 2.1 T2V 1.3B | 1.3B | FSDP2 via Automodel + DDP | ✅ | | ||
| | Wan 2.1 T2V 14B | 14B | FSDP2 via Automodel + DDP | ✅ | | ||
| | FLUX | TBD | TBD | 🔄 In Progress | | ||
|
|
||
| --- | ||
|
|
||
| ## Advanced | ||
|
|
||
| **Custom parallelization:** | ||
| ```yaml | ||
| fsdp: | ||
| tp_size: 2 # Tensor parallel | ||
| dp_size: 4 # Data parallel | ||
| ``` | ||
|
|
||
| **Checkpoint cleanup:** | ||
| ```python | ||
| from pathlib import Path | ||
| import shutil | ||
|
|
||
| def cleanup_old_checkpoints(checkpoint_dir, keep_last_n=3): | ||
| checkpoints = sorted(Path(checkpoint_dir).glob("step_*")) | ||
| for old_ckpt in checkpoints[:-keep_last_n]: | ||
| shutil.rmtree(old_ckpt) | ||
| ``` | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@pablo-garay
do we have a solution for this? This is currently a workaround.