Skip to content

NVIDIA-NeMo/DataDesigner

🎨 NeMo Data Designer

CI License Python 3.10 - 3.13 NeMo Microservices Code

Generate high-quality synthetic datasets from scratch or using your own seed data.


Welcome!

Data Designer helps you create synthetic datasets that go beyond simple LLM prompting. Whether you need diverse statistical distributions, meaningful correlations between fields, or validated high-quality outputs, Data Designer provides a flexible framework for building production-grade synthetic data.

What can you do with Data Designer?

  • Generate diverse data using statistical samplers, LLMs, or existing seed datasets
  • Control relationships between fields with dependency-aware generation
  • Validate quality with built-in Python, SQL, and custom local and remote validators
  • Score outputs using LLM-as-a-judge for quality assessment
  • Iterate quickly with preview mode before full-scale generation

Quick Start

1. Install

pip install data-designer

Or install from source:

git clone https://github.com/NVIDIA-NeMo/DataDesigner.git
cd DataDesigner
make install

2. Set your API key

Get your API key from build.nvidia.com or OpenAI:

export NVIDIA_API_KEY="your-api-key-here"
# Or use OpenAI
export OPENAI_API_KEY="your-openai-api-key-here"

3. Start generating data!

from data_designer.essentials import (
    CategorySamplerParams,
    DataDesigner,
    DataDesignerConfigBuilder,
    LLMTextColumnConfig,
    PersonSamplerParams,
    SamplerColumnConfig,
    SamplerType,
)

# Initialize with default settings
data_designer = DataDesigner()
config_builder = DataDesignerConfigBuilder()

# Add a product category
config_builder.add_column(
    SamplerColumnConfig(
        name="product_category",
        sampler_type=SamplerType.CATEGORY,
        params=CategorySamplerParams(
            values=["Electronics", "Clothing", "Home & Kitchen", "Books"],
        ),
    )
)

# Generate personalized customer reviews
config_builder.add_column(
    LLMTextColumnConfig(
        name="review",
        model_alias="nvidia-text",
        prompt="""Write a brief product review for a {{ product_category }} item you recently purchased.""",
    )
)

# Preview your dataset
preview = data_designer.preview(config_builder=config_builder)
preview.display_sample_record()

What's next?

πŸ“š Learn more

πŸ”§ Configure models via CLI

data-designer config providers # Configure model providers
data-designer config models    # Set up your model configurations
data-designer config list      # View current settings

🀝 Get involved


Telemetry

Data Designer collects telemetry to help us improve the library for developers. We collect:

  • The names of models used
  • The count of input tokens
  • The count of output tokens

No user or device information is collected. This data is not used to track any individual user behavior. It is used to see an aggregation of which models are the most popular for SDG. We will share this usage data with the community.

Specifically, a model name that is defined a ModelConfig object, is what will be collected. In the below example config:

ModelConfig(
    alias="nv-reasoning",
    model="openai/gpt-oss-20b",
    provider="nvidia",
    inference_parameters=InferenceParameters(
        temperature=0.3,
        top_p=0.9,
        max_tokens=4096,
    ),
    )

The value openai/gpt-oss-20b would be collected.

To disable telemetry capture, set NEMO_TELEMETRY_ENABLED=false.


License

Apache License 2.0 – see LICENSE for details.


Citation

If you use NeMo Data Designer in your research, please cite it using the following BibTeX entry:

@misc{nemo-data-designer,
  author = {The NeMo Data Designer Team, NVIDIA},
  title = {NeMo Data Designer: A framework for generating synthetic data from scratch or based on your own seed data},
  howpublished = {\url{https://github.com/NVIDIA-NeMo/DataDesigner}},
  year = {2025},
  note = {GitHub Repository},
}

About

🎨 NeMo Data Designer: A general library for generating high-quality synthetic data from scratch or based on seed data.

Resources

License

Code of conduct

Contributing

Stars

Watchers

Forks

Packages

No packages published