Skip to content
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions research/brats18/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# BraTS18 dataset training data (keep datalist JSON files, but ignore the actual data)
dataset_brats18/dataset/training

# Compressed medical image files
*.nii.gz

# PyTorch model checkpoints
*.pt
*.pth

# Python cache
__pycache__/
*.pyc
286 changes: 286 additions & 0 deletions research/brats18/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,286 @@
# Federated Learning with Differential Privacy for BraTS18 Segmentation

This example demonstrates federated learning for 3D medical image segmentation using the NVIDIA FLARE Job Recipe API.

## Installation

### Prerequisites
Set up a virtual environment and follow the [example root readme](../../README.md).

### Install NVIDIA FLARE
```bash
pip install nvflare
```

### Install Dependencies
```bash
pip install -r requirements.txt
```

For complete installation instructions, see [Installation](https://nvflare.readthedocs.io/en/main/installation.html).

## Project Structure

```
brats18/
├── job.py # Job Recipe entrypoint
├── client.py # Client training script (MONAI + Client API)
├── model.py # Model definition (BratsSegResNet wrapper)
├── dataset_brats18/ # Dataset and datalist splits
│ ├── dataset/ # BraTS18 training data (download required)
│ └── datalist/ # Data split JSONs (site-1.json, site-All.json, etc.)
├── result_stat/ # Evaluation and plotting scripts
└── figs/ # Result figures
```

## Data

### BraTS18 Dataset

This example uses the BraTS 2018 dataset for volumetric (3D) segmentation of brain tumor subregions from multimodal MRIs. The model is based on [Myronenko 2018](https://arxiv.org/abs/1810.11654) [1].

**Task**: Segment 3 nested subregions of primary brain tumors (gliomas):
- **Enhancing Tumor (ET)**: Areas with hyper-intensity in T1c
- **Tumor Core (TC)**: The bulk of the tumor (ET + necrotic + non-enhancing parts)
- **Whole Tumor (WT)**: Complete extent (TC + peritumoral edema)

**Input**: 4 aligned MRI scans per patient (T1c, T1, T2, FLAIR)

![Brain Tumor Segmentation](https://developer.download.nvidia.com/assets/Clara/Images/clara_pt_brain_mri_segmentation_workflow.png)

### Download Dataset

Download BraTS 2018 data from [Multimodal Brain Tumor Segmentation Challenge (BraTS) 2018](https://www.med.upenn.edu/cbica/brats2018.html) [2-6].

Place the data in `./dataset_brats18/dataset`. It should result in a sub-folder `./dataset_brats18/dataset/training`.

### Data Splits

The dataset is split into 4 subsets for federated learning:

| File | Purpose | Training Samples | Validation Samples |
|------|---------|-----------------|-------------------|
| `site-1.json` | Client 1 data | 60 | 43 |
| `site-2.json` | Client 2 data | 61 | 43 |
| `site-3.json` | Client 3 data | 61 | 43 |
| `site-4.json` | Client 4 data | 60 | 43 |
| `site-All.json` | Centralized training | 242 | 43 |

**Note**: All clients use the same validation set (43 samples) for fair comparison. For centralized training with 1 client, `site-All.json` is automatically used to include all training data.

### Prepare Dataset Paths

Set environment variables for dataset locations:
```bash
export DATASET_ROOT="${PWD}/dataset_brats18/dataset"
export DATALIST_ROOT="${PWD}/dataset_brats18/datalist"
```

## Client

### Model

The model uses MONAI's SegResNet architecture wrapped in a custom `BratsSegResNet` class. The wrapper explicitly stores constructor arguments as attributes, which is required for proper serialization by NVFlare's Job API.

Model architecture (defined in `model.py`):
- **Input**: 4 MRI channels (T1c, T1, T2, FLAIR)
- **Architecture**: SegResNet with residual blocks
- **Output**: 3 segmentation channels (ET, TC, WT)
- **Parameters**: 16 initial filters, 0.2 dropout

### Client Training Script

The client script (`client.py`) implements:

1. **Data Loading**: Uses MONAI's data loaders with client-specific data splits
2. **Model Training**: Standard PyTorch training loop with optional FedProx regularization
3. **Validation**: Computes Dice metrics for each tumor subregion
4. **Communication**: Uses NVFlare Client API (`flare.receive()` / `flare.send()`)
5. **Weight Diff**: Automatically handled by the API when `params_transfer_type=TransferType.DIFF`

Training hyperparameters:
- Learning rate: 1e-4
- Optimizer: Adam with weight decay 1e-5
- Loss: Dice Loss
- Local epochs per round: 1
- ROI size: 224×224×144

## Server

### Aggregation

The server uses the `FedAvg` workflow, which implements federated averaging, the aggregator uses **weighted averaging** based on the number of training steps (`NUM_STEPS_CURRENT_ROUND`).

### Model Selection

The `IntimeModelSelector` tracks validation metrics (`val_dice`) across rounds and saves the best performing global model as `best_FL_global_model.pt`.

### Differential Privacy (Optional)

When `--enable_dp` is specified, the **SVTPrivacy** filter is applied to client outputs:

- **Method**: Sparse Vector Technique (SVT) [7, 8]
- **Effect**: Adds Laplace noise and selectively shares only a fraction of weight updates
- **Parameters** (configurable in `job.py`):
- `fraction=0.9`: Share top 90% of weights
- `epsilon=0.001`: Privacy budget
- `noise_var=1.0`: Noise variance
- `gamma=1e-4`: Clipping threshold

**Privacy-Utility Trade-off**: DP provides privacy guarantees but reduces model accuracy and convergence (see Results section).

## Job Recipe

The `job.py` file uses the `FedAvgRecipe` to configure the federated learning job:

```python
recipe = FedAvgRecipe(
name=f"brats18_{n_clients}",
min_clients=n_clients,
num_rounds=num_rounds,
initial_model=create_brats_model(),
train_script="client.py",
train_args="...",
key_metric="val_dice",
params_transfer_type=TransferType.DIFF,
)
```

## Run Job

### Basic Commands

**Centralized training** (1 client, all data):
```bash
python job.py --n_clients 1 --num_rounds 600 --gpu 0 \
--dataset_base_dir "${DATASET_ROOT}" --datalist_json_path "${DATALIST_ROOT}"
```

**FedAvg** (4 clients on 4 GPUs):
```bash
python job.py --n_clients 4 --num_rounds 600 --gpu 0,1,2,3 \
--dataset_base_dir "${DATASET_ROOT}" --datalist_json_path "${DATALIST_ROOT}"
```

**FedAvg** (4 clients on single 48GB GPU):
```bash
python job.py --n_clients 4 --num_rounds 600 --gpu 0 --threads 4 \
--dataset_base_dir "${DATASET_ROOT}" --datalist_json_path "${DATALIST_ROOT}"
```

**FedAvg with Differential Privacy** (4 clients on single 48GB GPU):
```bash
python job.py --n_clients 4 --num_rounds 600 --gpu 0 --threads 4 --enable_dp \
--dataset_base_dir "${DATASET_ROOT}" --datalist_json_path "${DATALIST_ROOT}"
```

### Workspace and Output

By default, results are stored under `/tmp/nvflare/simulation/<job_name>`:
- Job names follow the format `brats18_{n_clients}` (e.g., `brats18_4`)
- With DP enabled: `brats18_{n_clients}_dp` (e.g., `brats18_4_dp`)

Use `--workspace` to specify a custom workspace root.

### Additional Options

**Customize training hyperparameters:**
```bash
python job.py --n_clients 4 --num_rounds 100 \
--learning_rate 5e-5 --aggregation_epochs 2 --cache_dataset 0.5 \
--dataset_base_dir "${DATASET_ROOT}" --datalist_json_path "${DATALIST_ROOT}"
```

**Use custom job name:**
```bash
python job.py --job_name my_experiment --n_clients 4 \
--dataset_base_dir "${DATASET_ROOT}" --datalist_json_path "${DATALIST_ROOT}"
```

## Results

### Model Evaluation

The best global models are stored at:
```
<workspace_root>/<job_name>/server/simulate_job/app_server/best_FL_global_model.pt
```

Example: `/tmp/nvflare/simulation/brats18_4/server/simulate_job/app_server/best_FL_global_model.pt`

To evaluate the models:
```bash
cd ./result_stat
bash testing_models_3d.sh
```

### Training and Validation Curves

View training progress with TensorBoard:
```bash
tensorboard --logdir='/tmp/nvflare/simulation'
```

Generate comparison plots:
```bash
cd ./result_stat
python3 plot_tensorboard_events.py
```

The TensorBoard curves (smoothed with weight 0.8) for validation Dice over 600 rounds (1 local epoch per round):

![All training curve](./figs/nvflare_brats18.png)

**Key Observations:**
- FedAvg achieves similar accuracy to centralized training
- Differential Privacy reduces accuracy and convergence but provides privacy guarantees
- All methods converge within 600 rounds

### Validation Metrics

Accuracy metrics after 600 rounds:

| Configuration | Val Overall Dice | Val TC Dice | Val WT Dice | Val ET Dice |
|---------------|------------------|-------------|-------------|-------------|
| brats18_1 (central) | 0.8558 | 0.8648 | 0.9070 | 0.7894 |
| brats18_4 (fedavg) | 0.8573 | 0.8687 | 0.9088 | 0.7879 |
| brats18_4_dp (fedavg+dp) | 0.8209 | 0.8282 | 0.8818 | 0.7454 |

**Key Findings:**
- **FedAvg vs Centralized**: Minimal difference (0.8573 vs 0.8558) - demonstrates effectiveness of federated learning
- **DP Impact**: ~4% Dice reduction (0.8573 → 0.8209) - privacy-utility trade-off with the chosen SVTPrivacy parameters

Different DP settings will have different impacts on performance. Adjust `fraction`, `epsilon`, `noise_var`, and `gamma` in `job.py` to tune the privacy-utility trade-off.

## Technical Notes

### Framework Details

- **Framework**: MONAI + PyTorch + NVIDIA FLARE
- **FL Algorithm**: FedAvg (Federated Averaging)
- **Privacy**: SVT (Sparse Vector Technique) Differential Privacy
- **Communication**: Weight differences (`TransferType.DIFF`) for applying DP
- **Aggregation**: Weighted averaging based on local training steps

### Hardware Requirements

- Minimum 12 GB GPU per client
- For 4 clients on single GPU: Recommend 48 GB GPU

## References

[1] Myronenko A. 3D MRI brain tumor segmentation using autoencoder regularization. InInternational MICCAI Brainlesion Workshop 2018 Sep 16 (pp. 311-320). Springer, Cham.

[2] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, et al. "The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)", IEEE Transactions on Medical Imaging 34(10), 1993-2024 (2015) DOI: 10.1109/TMI.2014.2377694

[3] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J.S. Kirby, et al., "Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features", Nature Scientific Data, 4:170117 (2017) DOI: 10.1038/sdata.2017.117

[4] S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, et al., "Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge", arXiv preprint arXiv:1811.02629 (2018)

[5] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. Kirby, et al., "Segmentation Labels and Radiomic Features for the Pre-operative Scans of the TCGA-GBM collection", The Cancer Imaging Archive, 2017. DOI: 10.7937/K9/TCIA.2017.KLXWJJ1Q

[6] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. Kirby, et al., "Segmentation Labels and Radiomic Features for the Pre-operative Scans of the TCGA-LGG collection", The Cancer Imaging Archive, 2017. DOI: 10.7937/K9/TCIA.2017.GJQ7R0EF

[7] Li, W., Milletarì, F., Xu, D., Rieke, N., Hancox, J., Zhu, W., Baust, M., Cheng, Y., Ourselin, S., Cardoso, M.J. and Feng, A., 2019, October. Privacy-preserving federated brain tumour segmentation. In International workshop on machine learning in medical imaging (pp. 133-141). Springer, Cham.

[8] Lyu, M., Su, D., & Li, N. (2016). Understanding the sparse vector technique for differential privacy. arXiv preprint arXiv:1603.01699.
Loading
Loading