-
Notifications
You must be signed in to change notification settings - Fork 2k
[#4745][fix] Pass lora_params through Qwen2/3 model forward #10174
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
|
/bot run |
📝 WalkthroughWalkthroughTwo Qwen model implementations are updated to propagate additional keyword arguments through their forward paths. In modeling_qwen.py, kwargs are forwarded through decoder layers and model calls. In modeling_qwen3.py, kwargs are forwarded to each decoder layer during iteration. No public signatures are altered. Changes
Estimated code review effort🎯 1 (Trivial) | ⏱️ ~5 minutes
Pre-merge checks and finishing touches❌ Failed checks (2 warnings)
✅ Passed checks (1 passed)
✨ Finishing touches
🧪 Generate unit tests (beta)
Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out. Comment |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 1
🧹 Nitpick comments (1)
tensorrt_llm/_torch/models/modeling_qwen.py (1)
232-269: Consider adding test coverage for LoRA functionality.While the kwargs propagation changes look correct, the PR description doesn't specify test coverage for this fix. Consider adding integration or unit tests to verify that LoRA parameters are correctly applied to Qwen2/2.5/3 models in the PyTorch backend.
Would you like me to help draft a test case that verifies lora_params flow through the forward pass and are correctly applied to the model layers?
📜 Review details
Configuration used: Path: .coderabbit.yaml
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (2)
tensorrt_llm/_torch/models/modeling_qwen.py(2 hunks)tensorrt_llm/_torch/models/modeling_qwen3.py(1 hunks)
🧰 Additional context used
📓 Path-based instructions (2)
**/*.py
📄 CodeRabbit inference engine (CODING_GUIDELINES.md)
**/*.py: Code developed for TensorRT-LLM should conform to Python 3.8+
Indent Python code with 4 spaces. Do not use tabs
Always maintain the namespace when importing in Python, even if only one class or function from a module is used
Python files should use snake_case naming:some_file.py
Python classes should use PascalCase naming:class SomeClass
Python functions and methods should use snake_case naming:def my_awesome_function():
Python local variables should use snake_case naming:my_variable = ...
Python variable names that start with a number should be prefixed with 'k':k_99th_percentile = ...
Python global variables should use upper snake_case with prefix 'G':G_MY_GLOBAL = ...
Python constants should use upper snake_case naming:MY_CONSTANT = ...
Avoid shadowing variables declared in an outer scope in Python
Initialize all externally visible members of a Python class in the constructor
For Python interfaces that may be used outside a file, prefer docstrings over comments
Python comments should be reserved for code within a function, or interfaces that are local to a file
Use Google style docstrings in Python for classes and functions, which can be parsed by Sphinx
Python attributes and variables can be documented inline with type and description
Avoid using reflection in Python when functionality can be easily achieved without reflection
When using try-except blocks in Python, limit the except to the smallest set of errors possible
When using try-except blocks in Python to handle multiple possible variable types (duck-typing), keep the body of the try as small as possible, using the else block for logic
Files:
tensorrt_llm/_torch/models/modeling_qwen.pytensorrt_llm/_torch/models/modeling_qwen3.py
**/*.{cpp,h,cu,cuh,py}
📄 CodeRabbit inference engine (CODING_GUIDELINES.md)
All TensorRT-LLM Open Source Software code should contain an NVIDIA copyright header that includes the year of its latest meaningful modification
Files:
tensorrt_llm/_torch/models/modeling_qwen.pytensorrt_llm/_torch/models/modeling_qwen3.py
🧠 Learnings (1)
📓 Common learnings
Learnt from: shaharmor98
Repo: NVIDIA/TensorRT-LLM PR: 7231
File: tensorrt_llm/_torch/pyexecutor/_util.py:504-509
Timestamp: 2025-08-26T06:07:02.166Z
Learning: In tensorrt_llm/_torch/pyexecutor/_util.py, when calling model_engine.set_lora_model_config(), pass model_binding_config.mlp_hidden_size directly without multiplying by mapping.tp_size, as the mlp_hidden_size from get_bindings_model_config() is already the per-TP rank value needed for LoRA weight packaging.
Learnt from: amitz-nv
Repo: NVIDIA/TensorRT-LLM PR: 8063
File: tensorrt_llm/lora_manager.py:1080-1112
Timestamp: 2025-09-29T15:14:28.503Z
Learning: In tensorrt_llm/lora_manager.py, when calculating part_sizes for attn_qkv fused LoRA modules, the sizes are correctly multiplied by tp_size because model_config.num_heads and model_config.num_kv_heads are already divided by tp_size (per-TP-rank values), so multiplication is needed to get the original full concatenated dimension size. The interleave_fused_lora_weights_for_tp function provides proper validation.
Learnt from: amitz-nv
Repo: NVIDIA/TensorRT-LLM PR: 8063
File: tensorrt_llm/lora_manager.py:1080-1112
Timestamp: 2025-09-29T15:14:28.503Z
Learning: In tensorrt_llm/lora_manager.py, when calculating part_sizes for attn_qkv fused LoRA modules, the sizes are correctly multiplied by tp_size because model_config.num_heads and model_config.num_kv_heads are already divided by tp_size (per-TP-rank values), so multiplication is needed to get the original full concatenated dimension size. The interleave_fused_lora_weights_for_tp function provides proper validation.
Learnt from: amitz-nv
Repo: NVIDIA/TensorRT-LLM PR: 8063
File: tensorrt_llm/lora_manager.py:1080-1112
Timestamp: 2025-09-29T15:14:28.503Z
Learning: In tensorrt_llm/lora_manager.py, when calculating part_sizes for attn_qkv fused LoRA modules, the sizes are correctly multiplied by tp_size because model_config.num_heads and model_config.num_kv_heads are already divided by tp_size (per-TP-rank values), so multiplication is needed to get the original full concatenated dimension size. The interleave_fused_lora_weights_for_tp function provides proper validation with asserts for total size and TP divisibility.
⏰ Context from checks skipped due to timeout of 90000ms. You can increase the timeout in your CodeRabbit configuration to a maximum of 15 minutes (900000ms). (1)
- GitHub Check: Pre-commit Check
🔇 Additional comments (3)
tensorrt_llm/_torch/models/modeling_qwen.py (2)
225-226: LGTM!The kwargs propagation through the decoder layers is correctly implemented and consistent with the Qwen3 model implementation.
166-166: Code change is correct.The kwargs propagation at line 166 properly forwards
lora_paramsand other parameters to the attention module. BothAttention(parent ofQwenAttention) andQKNormRoPEAttentionaccept**kwargsin their forward methods, withAttention.forward()explicitly supportinglora_params: Optional[dict]for LoRA adapter application.tensorrt_llm/_torch/models/modeling_qwen3.py (1)
214-214: The kwargs propagation and LoRA parameter handling are correctly implemented. The code properly chains kwargs fromQwen3Model.forward()throughQwen3DecoderLayertoQwen3Attention(which inherits fromQKNormRoPEAttention), and the attention module correctly accepts and processeslora_paramsin its forward method with dedicated LoRA layers for QKV and output projections.
|
PR_Github #29229 [ run ] triggered by Bot. Commit: |
|
PR_Github #29229 [ run ] completed with state
|
|
/bot run |
|
PR_Github #29251 [ run ] triggered by Bot. Commit: |
|
PR_Github #29251 [ run ] completed with state
|
|
Rebased to get on top of 77e37d9. |
|
/bot run |
|
PR_Github #29257 [ run ] triggered by Bot. Commit: |
|
PR_Github #29257 [ run ] completed with state
|
|
/bot run |
|
PR_Github #29651 [ run ] triggered by Bot. Commit: |
|
PR_Github #29651 [ run ] completed with state |
|
/bot run |
|
PR_Github #29785 [ run ] triggered by Bot. Commit: |
|
PR_Github #29785 [ run ] completed with state |
|
Could someone please review this press release? The CI tests have passed. |
c63ca0c to
0db42f3
Compare
Signed-off-by: Kanghwan Jang <[email protected]>
Signed-off-by: Kanghwan Jang <[email protected]>
0db42f3 to
7ea6f70
Compare
|
/bot run |
|
PR_Github #30688 [ run ] triggered by Bot. Commit: |
|
PR_Github #30688 [ run ] completed with state
|
|
/bot run |
|
PR_Github #30765 [ run ] triggered by Bot. Commit: |
|
PR_Github #30765 [ run ] completed with state |
Summary by CodeRabbit
✏️ Tip: You can customize this high-level summary in your review settings.
Description
Fix LoRA not being applied for Qwen2/2.5/3 models in PyTorch backend.
Test Coverage
PR Checklist
Please review the following before submitting your PR:
PR description clearly explains what and why. If using CodeRabbit's summary, please make sure it makes sense.
PR Follows TRT-LLM CODING GUIDELINES to the best of your knowledge.
Test cases are provided for new code paths (see test instructions)
Any new dependencies have been scanned for license and vulnerabilities
CODEOWNERS updated if ownership changes
Documentation updated as needed
Update tava architecture diagram if there is a significant design change in PR.
The reviewers assigned automatically/manually are appropriate for the PR.
[V] Please check this after reviewing the above items as appropriate for this PR.
GitHub Bot Help
/bot [-h] ['run', 'kill', 'skip', 'reuse-pipeline'] ...Provide a user friendly way for developers to interact with a Jenkins server.
Run
/bot [-h|--help]to print this help message.See details below for each supported subcommand.
Details
run [--reuse-test (optional)pipeline-id --disable-fail-fast --skip-test --stage-list "A10-PyTorch-1, xxx" --gpu-type "A30, H100_PCIe" --test-backend "pytorch, cpp" --add-multi-gpu-test --only-multi-gpu-test --disable-multi-gpu-test --post-merge --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx" --detailed-log --debug(experimental)]Launch build/test pipelines. All previously running jobs will be killed.
--reuse-test (optional)pipeline-id(OPTIONAL) : Allow the new pipeline to reuse build artifacts and skip successful test stages from a specified pipeline or the last pipeline if no pipeline-id is indicated. If the Git commit ID has changed, this option will be always ignored. The DEFAULT behavior of the bot is to reuse build artifacts and successful test results from the last pipeline.--disable-reuse-test(OPTIONAL) : Explicitly prevent the pipeline from reusing build artifacts and skipping successful test stages from a previous pipeline. Ensure that all builds and tests are run regardless of previous successes.--disable-fail-fast(OPTIONAL) : Disable fail fast on build/tests/infra failures.--skip-test(OPTIONAL) : Skip all test stages, but still run build stages, package stages and sanity check stages. Note: Does NOT update GitHub check status.--stage-list "A10-PyTorch-1, xxx"(OPTIONAL) : Only run the specified test stages. Examples: "A10-PyTorch-1, xxx". Note: Does NOT update GitHub check status.--gpu-type "A30, H100_PCIe"(OPTIONAL) : Only run the test stages on the specified GPU types. Examples: "A30, H100_PCIe". Note: Does NOT update GitHub check status.--test-backend "pytorch, cpp"(OPTIONAL) : Skip test stages which don't match the specified backends. Only support [pytorch, cpp, tensorrt, triton]. Examples: "pytorch, cpp" (does not run test stages with tensorrt or triton backend). Note: Does NOT update GitHub pipeline status.--only-multi-gpu-test(OPTIONAL) : Only run the multi-GPU tests. Note: Does NOT update GitHub check status.--disable-multi-gpu-test(OPTIONAL) : Disable the multi-GPU tests. Note: Does NOT update GitHub check status.--add-multi-gpu-test(OPTIONAL) : Force run the multi-GPU tests in addition to running L0 pre-merge pipeline.--post-merge(OPTIONAL) : Run the L0 post-merge pipeline instead of the ordinary L0 pre-merge pipeline.--extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx"(OPTIONAL) : Run the ordinary L0 pre-merge pipeline and specified test stages. Examples: --extra-stage "H100_PCIe-TensorRT-Post-Merge-1, xxx".--detailed-log(OPTIONAL) : Enable flushing out all logs to the Jenkins console. This will significantly increase the log volume and may slow down the job.--debug(OPTIONAL) : Experimental feature. Enable access to the CI container for debugging purpose. Note: Specify exactly one stage in thestage-listparameter to access the appropriate container environment. Note: Does NOT update GitHub check status.For guidance on mapping tests to stage names, see
docs/source/reference/ci-overview.mdand the
scripts/test_to_stage_mapping.pyhelper.kill
killKill all running builds associated with pull request.
skip
skip --comment COMMENTSkip testing for latest commit on pull request.
--comment "Reason for skipping build/test"is required. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.reuse-pipeline
reuse-pipelineReuse a previous pipeline to validate current commit. This action will also kill all currently running builds associated with the pull request. IMPORTANT NOTE: This is dangerous since lack of user care and validation can cause top of tree to break.