Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions CHANGELOG.rst
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,8 @@ Model Optimizer Changelog (Linux)
- Add flag ``op_types_to_exclude_fp16`` in ONNX quantization to exclude ops from being converted to FP16/BF16. Alternatively, for custom TensorRT ops, this can also be done by indicating ``'fp32'`` precision in ``trt_plugins_precision``.
- Add LoRA mode support for MCore in a new peft submodule: ``modelopt.torch.peft.update_model(model, LORA_CFG)``.
- Support PTQ and fakequant in vLLM for fast evaluation of arbitrary quantization formats. See ``examples/vllm_serve`` for more details.
- Add support for ``nemotron-post-training-dataset-v2`` and ``nemotron-post-training-dataset-v1`` in ``examples/llm_ptq``. Default to a mix of ``cnn_dailymail`` and ``nemotron-post-training-dataset-v2`` if no dataset is specified.
- Allow specifying ``calib_seq`` in ``examples/llm_ptq`` to set the maximum sequence length for calibration.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

general question, what is the difference between calib_size and calib_seq?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

calib_size is the num of calib samples.
calib_seq is the length of the max calib sample sequence.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit:
@cjluo-nv should we use be more verbose and use --calib_seq_len for clarity?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ACK. Personally I prefer shorter flags.


0.37 (2025-09-xx)
^^^^^^^^^^^^^^^^^
Expand Down
18 changes: 16 additions & 2 deletions examples/llm_ptq/hf_ptq.py
Original file line number Diff line number Diff line change
Expand Up @@ -297,8 +297,14 @@ def main(args):
)
else:
if args.dataset is None:
args.dataset = ["cnn_dailymail"]
warnings.warn("No dataset specified. Defaulting to cnn_dailymail.")
args.dataset = ["cnn_dailymail", "nemotron-post-training-dataset-v2"]
warnings.warn(
"No dataset specified. Defaulting to cnn_dailymail and nemotron-post-training-dataset-v2."
)
# Adjust calib_size to match dataset length by extending or truncating as needed
args.calib_size = (args.calib_size + [args.calib_size[-1]] * len(args.dataset))[
: len(args.dataset)
]
tokenizer = get_tokenizer(args.pyt_ckpt_path, trust_remote_code=args.trust_remote_code)

default_padding_side = tokenizer.padding_side
Expand Down Expand Up @@ -349,6 +355,7 @@ def main(args):
tokenizer=tokenizer,
batch_size=args.batch_size,
num_samples=args.calib_size,
max_sample_length=args.calib_seq,
device=device,
)
model = mts.sparsify(
Expand Down Expand Up @@ -390,6 +397,7 @@ def main(args):

args.batch_size = get_max_batch_size(
model,
max_sample_length=args.calib_seq,
sample_memory_usage_ratio=sample_memory_usage_ratio if not run_auto_quant else 1.0,
sample_input_single_batch=sample_input_single_batch,
enable_grad=run_auto_quant,
Expand Down Expand Up @@ -680,6 +688,12 @@ def output_decode(generated_ids, input_shape):
type=str,
default="512",
)
parser.add_argument(
"--calib_seq",
help="Maximum sequence length for calibration.",
type=int,
default=512,
)
parser.add_argument("--export_path", default="exported_model")
parser.add_argument(
"--dataset",
Expand Down
4 changes: 4 additions & 0 deletions examples/llm_ptq/scripts/huggingface_example.sh
Original file line number Diff line number Diff line change
Expand Up @@ -113,6 +113,10 @@ if [ -n "$GPU_MAX_MEM_PERCENTAGE" ]; then
PTQ_ARGS+=" --gpu_max_mem_percentage=$GPU_MAX_MEM_PERCENTAGE "
fi

if [ -n "$CALIB_SEQ" ]; then
PTQ_ARGS+=" --calib_seq=$CALIB_SEQ "
fi

if ! $VERBOSE; then
PTQ_ARGS+=" --no-verbose "
fi
Expand Down
8 changes: 7 additions & 1 deletion examples/llm_ptq/scripts/parser.sh
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ parse_options() {
USE_SEQ_DEVICE_MAP=false

# Parse command-line options
ARGS=$(getopt -o "" -l "model:,quant:,kv_cache_quant:,tp:,pp:,sparsity:,awq_block_size:,calib:,calib_batch_size:,auto_quantize_bits:,output:,batch:,tasks:,lm_eval_tasks:,lm_eval_limit:,simple_eval_tasks:,trust_remote_code,use_seq_device_map,gpu_max_mem_percentage:,kv_cache_free_gpu_memory_fraction:,low_memory_mode,no-verbose,calib_dataset:" -n "$0" -- "$@")
ARGS=$(getopt -o "" -l "model:,quant:,kv_cache_quant:,tp:,pp:,sparsity:,awq_block_size:,calib:,calib_batch_size:,auto_quantize_bits:,output:,batch:,tasks:,lm_eval_tasks:,lm_eval_limit:,simple_eval_tasks:,trust_remote_code,use_seq_device_map,gpu_max_mem_percentage:,kv_cache_free_gpu_memory_fraction:,low_memory_mode,no-verbose,calib_dataset:,calib_seq:" -n "$0" -- "$@")

eval set -- "$ARGS"
while true; do
Expand Down Expand Up @@ -64,19 +64,24 @@ parse_options() {
--no-verbose ) VERBOSE=false; shift;;
--low_memory_mode ) LOW_MEMORY_MODE=true; shift;;
--calib_dataset ) CALIB_DATASET="$2"; shift 2;;
--calib_seq ) CALIB_SEQ="$2"; shift 2;;
-- ) shift; break ;;
* ) break ;;
esac
done

DEFAULT_CALIB_SIZE=512
DEFAULT_CALIB_SEQ=512
DEFAULT_CALIB_BATCH_SIZE=0
DEFAULT_BUILD_MAX_OUTPUT_LEN=1024
DEFAULT_BUILD_MAX_BATCH_SIZE=2

if [ -z "$CALIB_SIZE" ]; then
CALIB_SIZE=$DEFAULT_CALIB_SIZE
fi
if [ -z "$CALIB_SEQ" ]; then
CALIB_SEQ=$DEFAULT_CALIB_SEQ
fi
if [ -z "$CALIB_BATCH_SIZE" ]; then
CALIB_BATCH_SIZE=$DEFAULT_CALIB_BATCH_SIZE
fi
Expand Down Expand Up @@ -144,5 +149,6 @@ parse_options() {
echo "kv_cache_free_gpu_memory_fraction: $KV_CACHE_FREE_GPU_MEMORY_FRACTION"
echo "low_memory_mode: $LOW_MEMORY_MODE"
echo "calib_dataset: $CALIB_DATASET"
echo "calib_seq: $CALIB_SEQ"
echo "================="
}
18 changes: 16 additions & 2 deletions modelopt/torch/utils/dataset_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,20 @@
+ "\n"
+ sample["output"],
},
"nemotron-post-training-dataset-v2": {
"config": {
"path": "nvidia/Nemotron-Post-Training-Dataset-v2",
"split": ["stem", "chat", "math", "code"],
},
"preprocess": lambda sample: "\n".join(turn["content"] for turn in sample["messages"]),
},
"nemotron-post-training-dataset-v1": {
"config": {
"path": "nvidia/Nemotron-Post-Training-Dataset-v1",
"split": ["stem", "chat", "math", "code", "tool_calling"],
},
"preprocess": lambda sample: "\n".join(turn["content"] for turn in sample["messages"]),
},
"magpie": {
"config": {
"path": "Magpie-Align/Magpie-Pro-MT-300K-v0.1",
Expand Down Expand Up @@ -321,10 +335,10 @@ def _get_free_gpu_mem():
return 1
elif target_data_batch < 4:
return 2
elif target_data_batch < 64:
elif target_data_batch < 512:
return target_data_batch // 4 * 4
else:
return 64
return 512


def _process_batch(batch_data, infer_method, max_working_batch_size=None):
Expand Down