- 
                Notifications
    
You must be signed in to change notification settings  - Fork 190
 
Add functional test cases for published checkpoints on HF #455
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from 4 commits
4927fee
              3bd217a
              88c1335
              4c8261a
              f922be5
              5c379e0
              12943bb
              24e7e5f
              6300709
              54cab77
              File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change | 
|---|---|---|
| @@ -0,0 +1,225 @@ | ||
| # SPDX-FileCopyrightText: Copyright (c) 2023-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
| # SPDX-License-Identifier: Apache-2.0 | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
| 
     | 
||
| import itertools | ||
| import subprocess | ||
| 
     | 
||
| import pytest | ||
| import torch | ||
| 
     | 
||
| # Common test prompts for all backends | ||
| COMMON_PROMPTS = [ | ||
| "Hello, my name is", | ||
| "The president of the United States is", | ||
| "The capital of France is", | ||
| "The future of AI is", | ||
| ] | ||
| 
     | 
||
| 
     | 
||
| class ModelDeployer: | ||
| def __init__( | ||
| self, | ||
| backend: str = "trtllm", | ||
| model_id: str = "", | ||
| tensor_parallel_size: int = 1, | ||
| mini_sm: int = 89, | ||
| attn_backend: str = "TRTLLM", | ||
| base_model: str = "", | ||
| eagle3_one_model: bool = True, | ||
| ): | ||
| """ | ||
| Initialize the ModelDeployer. | ||
| 
     | 
||
| Args: | ||
| backend: The backend to use ('vllm', 'trtllm', or 'sglang') | ||
| model_id: Path to the model | ||
| tensor_parallel_size: Tensor parallel size for distributed inference | ||
| mini_sm: Minimum SM (Streaming Multiprocessor) requirement for the model | ||
| """ | ||
| self.backend = backend | ||
| self.model_id = model_id | ||
| self.tensor_parallel_size = tensor_parallel_size | ||
| self.mini_sm = mini_sm | ||
| self.attn_backend = attn_backend | ||
| self.base_model = base_model | ||
| self.eagle3_one_model = eagle3_one_model | ||
| 
     | 
||
| def run(self): | ||
| """Run the deployment based on the specified backend.""" | ||
| if torch.cuda.get_device_capability() < ( | ||
| self.mini_sm // 10, | ||
| self.mini_sm % 10, | ||
| ): | ||
| pytest.skip(reason=f"Requires sm{self.mini_sm} or higher") | ||
| return | ||
| 
     | 
||
| if torch.cuda.device_count() < self.tensor_parallel_size: | ||
| pytest.skip(reason=f"Requires at least {self.tensor_parallel_size} GPUs") | ||
| return | ||
| 
     | 
||
| if self.backend == "vllm": | ||
| self._deploy_vllm() | ||
| elif self.backend == "trtllm": | ||
| self._deploy_trtllm() | ||
| elif self.backend == "sglang": | ||
| self._deploy_sglang() | ||
| else: | ||
| raise ValueError(f"Unknown backend: {self.backend}") | ||
| # check gpu status | ||
| gpu_status = subprocess.run( | ||
| "nvidia-smi || true", shell=True, capture_output=True, text=True, check=True | ||
| ) | ||
| print("\n=== GPU Status Before Test ===") | ||
| print(gpu_status.stdout) | ||
| print("=============================\n") | ||
| 
     | 
||
| def _deploy_trtllm(self): | ||
| """Deploy a model using TensorRT-LLM.""" | ||
| try: | ||
| from tensorrt_llm import LLM, SamplingParams | ||
| from tensorrt_llm.llmapi import CudaGraphConfig, EagleDecodingConfig, KvCacheConfig | ||
| except ImportError: | ||
| pytest.skip("tensorrt_llm package not available") | ||
| 
     | 
||
| sampling_params = SamplingParams(max_tokens=32) | ||
| spec_config = None | ||
| llm = None | ||
| kv_cache_config = KvCacheConfig(enable_block_reuse=True, free_gpu_memory_fraction=0.8) | ||
| if "eagle" in self.model_id.lower(): | ||
| spec_config = EagleDecodingConfig( | ||
| max_draft_len=3, | ||
| speculative_model_dir=self.model_id, | ||
| eagle3_one_model=self.eagle3_one_model, | ||
| ) | ||
| cuda_graph = CudaGraphConfig( | ||
| max_batch_size=1, | ||
| ) | ||
| llm = LLM( | ||
| model=self.base_model, | ||
| tensor_parallel_size=self.tensor_parallel_size, | ||
| enable_attention_dp=False, | ||
| disable_overlap_scheduler=True, | ||
| enable_autotuner=False, | ||
| speculative_config=spec_config, | ||
| cuda_graph_config=cuda_graph, | ||
| kv_cache_config=kv_cache_config, | ||
| ) | ||
| else: | ||
| llm = LLM( | ||
| model=self.model_id, | ||
| tensor_parallel_size=self.tensor_parallel_size, | ||
| enable_attention_dp=False, | ||
| attn_backend=self.attn_backend, | ||
| trust_remote_code=True, | ||
| max_batch_size=8, | ||
| kv_cache_config=kv_cache_config, | ||
| ) | ||
| 
     | 
||
| outputs = llm.generate(COMMON_PROMPTS, sampling_params) | ||
| 
     | 
||
| # Print outputs | ||
| for output in outputs: | ||
| prompt = output.prompt | ||
| generated_text = output.outputs[0].text | ||
| print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") | ||
| 
     | 
||
| def _deploy_vllm(self): | ||
| """Deploy a model using vLLM.""" | ||
| try: | ||
| from vllm import LLM, SamplingParams | ||
| except ImportError: | ||
| pytest.skip("vllm package not available") | ||
| 
     | 
||
| quantization_method = "modelopt" | ||
| if "FP4" in self.model_id: | ||
| quantization_method = "modelopt_fp4" | ||
| llm = LLM( | ||
| model=self.model_id, | ||
| quantization=quantization_method, | ||
| tensor_parallel_size=self.tensor_parallel_size, | ||
| trust_remote_code=True, | ||
| ) | ||
| sampling_params = SamplingParams(temperature=0.8, top_p=0.9) | ||
| outputs = llm.generate(COMMON_PROMPTS, sampling_params) | ||
| 
     | 
||
| # Assertions and output | ||
| assert len(outputs) == len(COMMON_PROMPTS), ( | ||
| f"Expected {len(COMMON_PROMPTS)} outputs, got {len(outputs)}" | ||
| ) | ||
| 
     | 
||
| for i, output in enumerate(outputs): | ||
| assert output.prompt == COMMON_PROMPTS[i], f"Prompt mismatch at index {i}" | ||
| assert hasattr(output, "outputs"), f"Output {i} missing 'outputs' attribute" | ||
| assert len(output.outputs) > 0, f"Output {i} has no generated text" | ||
| assert hasattr(output.outputs[0], "text"), f"Output {i} missing 'text' attribute" | ||
| assert isinstance(output.outputs[0].text, str), f"Output {i} text is not a string" | ||
| assert len(output.outputs[0].text) > 0, f"Output {i} generated empty text" | ||
| 
     | 
||
| print(f"Model: {self.model_id}") | ||
| print(f"Prompt: {output.prompt!r}, Generated text: {output.outputs[0].text!r}") | ||
| print("-" * 50) | ||
| 
     | 
||
| 
         
      Comment on lines
    
      +140
     to 
      +175
    
   
  There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 🧩 Analysis chainvLLM quantization string may vary by version; confirm. Some versions expect "modelopt" vs "modelopt_fp4" or different aliases. Please confirm the CI vLLM version supports these strings. 🌐 Web query: 💡 Result: vLLM accepts the following ModelOpt quantization strings in the hf_quant_config.json "quant_algo" / "kv_cache_quant_algo" fields: 
 Incorrect quantization string identifiers; use "FP8" and "NVFP4" instead. vLLM accepts "FP8" for FP8 checkpoints and "NVFP4" for ModelOpt NVFP4/FP4 checkpoints (specified in hf_quant_config.json "quant_algo" fields). The code currently uses "modelopt" and "modelopt_fp4", which are not recognized by vLLM and will fail at runtime. Update lines 141–142 to use the correct identifiers: 
 🤖 Prompt for AI Agents | 
||
| def _deploy_sglang(self): | ||
| """Deploy a model using SGLang.""" | ||
| try: | ||
| import sglang as sgl | ||
| except ImportError: | ||
| pytest.skip("sglang package not available") | ||
| quantization_method = "modelopt" | ||
| if "FP4" in self.model_id: | ||
| quantization_method = "modelopt_fp4" | ||
| llm = sgl.Engine( | ||
| model_path=self.model_id, | ||
| quantization=quantization_method, | ||
| tp_size=self.tensor_parallel_size, | ||
| trust_remote_code=True, | ||
| ) | ||
| print(llm.generate(["What's the age of the earth? "])) | ||
| llm.shutdown() | ||
| 
     | 
||
| 
     | 
||
| class ModelDeployerList: | ||
| def __init__(self, **params): | ||
| self.params = {} | ||
| for key, value in params.items(): | ||
| if isinstance(value, (list, tuple)): | ||
| self.params[key] = list(value) | ||
| else: | ||
| self.params[key] = [value] | ||
| 
     | 
||
| # Pre-generate all deployers for pytest compatibility | ||
| self._deployers = list(self._generate_deployers()) | ||
| 
     | 
||
| def _generate_deployers(self): | ||
| for values in itertools.product(*self.params.values()): | ||
| deployer = ModelDeployer(**dict(zip(self.params.keys(), values))) | ||
| # Set test case ID in format "model_id_backend" | ||
| deployer.test_id = f"{deployer.model_id}_{deployer.backend}" | ||
| yield deployer | ||
| 
     | 
||
| def __iter__(self): | ||
| return iter(self._deployers) | ||
| 
     | 
||
| def __len__(self): | ||
| return len(self._deployers) | ||
| 
     | 
||
| def __getitem__(self, index): | ||
| return self._deployers[index] | ||
| 
     | 
||
| def __str__(self): | ||
| return f"ModelDeployerList({len(self._deployers)} items)" | ||
| 
     | 
||
| def __repr__(self): | ||
| return f"ModelDeployerList({len(self._deployers)} items)" | ||
Uh oh!
There was an error while loading. Please reload this page.