Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
91 changes: 49 additions & 42 deletions examples/diffusers/quantization/diffusion_trt.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,7 @@
}


@torch.inference_mode()
def generate_image(pipe, prompt, image_name):
seed = 42
image = pipe(
Expand All @@ -61,56 +62,57 @@ def generate_image(pipe, prompt, image_name):
print(f"Image generated saved as {image_name}")


def benchmark_model(
pipe, prompt, num_warmup=10, num_runs=50, num_inference_steps=20, model_dtype=torch.float16
@torch.inference_mode()
def benchmark_backbone_standalone(
pipe,
num_warmup=10,
num_benchmark=100,
model_name="flux-dev",
):
"""Benchmark the backbone model inference time."""
"""Benchmark the backbone model directly without running the full pipeline."""
backbone = pipe.transformer if hasattr(pipe, "transformer") else pipe.unet

backbone_times = []
# Generate dummy inputs for the backbone
dummy_inputs, _, _ = generate_dummy_inputs_and_dynamic_axes_and_shapes(model_name, backbone)

# Extract the dict from the tuple and move to cuda
dummy_inputs_dict = {
k: v.cuda() if isinstance(v, torch.Tensor) else v for k, v in dummy_inputs[0].items()
}

# Warmup
print(f"Warming up: {num_warmup} iterations")
for _ in tqdm(range(num_warmup), desc="Warmup"):
_ = backbone(**dummy_inputs_dict)

# Benchmark
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)

def forward_pre_hook(_module, _input):
print(f"Benchmarking: {num_benchmark} iterations")
times = []
for _ in tqdm(range(num_benchmark), desc="Benchmark"):
torch.cuda.profiler.cudart().cudaProfilerStart()
start_event.record()

def forward_hook(_module, _input, _output):
_ = backbone(**dummy_inputs_dict)
end_event.record()
torch.cuda.synchronize()
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I don't think you need to call sync here.

backbone_times.append(start_event.elapsed_time(end_event))

pre_handle = backbone.register_forward_pre_hook(forward_pre_hook)
post_handle = backbone.register_forward_hook(forward_hook)

try:
print(f"Starting warmup: {num_warmup} runs")
for _ in tqdm(range(num_warmup), desc="Warmup"):
with torch.amp.autocast("cuda", dtype=model_dtype):
_ = pipe(
prompt,
output_type="pil",
num_inference_steps=num_inference_steps,
generator=torch.Generator("cuda").manual_seed(42),
)

backbone_times.clear()

print(f"Starting benchmark: {num_runs} runs")
for _ in tqdm(range(num_runs), desc="Benchmark"):
with torch.amp.autocast("cuda", dtype=model_dtype):
_ = pipe(
prompt,
output_type="pil",
num_inference_steps=num_inference_steps,
generator=torch.Generator("cuda").manual_seed(42),
)
finally:
pre_handle.remove()
post_handle.remove()

total_backbone_time = sum(backbone_times)
avg_latency = total_backbone_time / (num_runs * num_inference_steps)
print(f"Inference latency of the torch backbone: {avg_latency:.2f} ms")
torch.cuda.profiler.cudart().cudaProfilerStop()
times.append(start_event.elapsed_time(end_event))

avg_latency = sum(times) / len(times)
times = sorted(times)
p50 = times[len(times) // 2]
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I suggest you use numpy.percentile for these instead.

p95 = times[int(len(times) * 0.95)]
p99 = times[int(len(times) * 0.99)]

print("\nBackbone-only inference latency:")
print(f" Average: {avg_latency:.2f} ms")
print(f" P50: {p50:.2f} ms")
print(f" P95: {p95:.2f} ms")
print(f" P99: {p99:.2f} ms")

return avg_latency


Expand Down Expand Up @@ -196,7 +198,12 @@ def main():
pipe.to("cuda")

if args.benchmark:
benchmark_model(pipe, args.prompt, model_dtype=model_dtype)
benchmark_backbone_standalone(
pipe,
num_warmup=10,
num_benchmark=100,
model_name=args.model,
)

if not args.skip_image:
generate_image(pipe, args.prompt, image_name)
Expand Down