Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
378 changes: 378 additions & 0 deletions ISSUE_4608_SOLUTION.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,378 @@
# Solution for GitHub Issue #4608: TensorRT Engine Hangs with PyTorch and PyCUDA

## Problem Summary

When importing PyTorch before initializing a TensorRT engine with PyCUDA, the program hangs at `engine.get_binding_shape()`. This is caused by a CUDA context conflict between PyTorch and PyCUDA/TensorRT.

## Root Cause

The issue occurs because:

1. **PyTorch creates its own CUDA context** when imported, which becomes the active context
2. **PyCUDA expects to manage its own CUDA context** and may conflict with PyTorch's context
3. **TensorRT operations** (like `get_binding_shape()`) require a valid CUDA context, and when there's a conflict between PyTorch's and PyCUDA's contexts, the operation hangs

## Solutions

### Solution 1: Use `cuda-python` Instead of PyCUDA (Recommended)

The TensorRT team has migrated samples from PyCUDA to `cuda-python` to avoid these conflicts and support newer GPUs. This is the **recommended approach**.

**Benefits:**
- No context conflicts with PyTorch
- Better support for modern GPUs
- Official NVIDIA CUDA Python bindings
- More maintainable and future-proof

**Implementation:**

```python
import torch # Can import PyTorch without issues
import tensorrt as trt
from cuda import cudart # Use cuda-python instead of pycuda
import numpy as np

def check_cuda_error(error):
"""Helper function to check CUDA errors"""
if isinstance(error, tuple):
error = error[0]
if error != cudart.cudaError_t.cudaSuccess:
error_name = cudart.cudaGetErrorName(error)[1]
error_string = cudart.cudaGetErrorString(error)[1]
raise RuntimeError(f"CUDA Error: {error_name} ({error_string})")

class TRTInference:
def __init__(self, engine_path: str):
# Initialize TensorRT logger and runtime
self.logger = trt.Logger(trt.Logger.ERROR)

# Load the TensorRT engine
with open(engine_path, "rb") as f:
runtime = trt.Runtime(self.logger)
self.engine = runtime.deserialize_cuda_engine(f.read())

if self.engine is None:
raise RuntimeError("Failed to load TensorRT engine")

# Create execution context
self.context = self.engine.create_execution_context()

# Get binding information - this now works without hanging
self.bindings = []
self.allocations = []

for i in range(self.engine.num_io_tensors):
name = self.engine.get_tensor_name(i)
dtype = self.engine.get_tensor_dtype(name)
shape = self.engine.get_tensor_shape(name)
is_input = self.engine.get_tensor_mode(name) == trt.TensorIOMode.INPUT

# Calculate size and allocate GPU memory
size = np.dtype(trt.nptype(dtype)).itemsize
for s in shape:
size *= s

err, allocation = cudart.cudaMalloc(size)
check_cuda_error(err)

binding = {
"name": name,
"dtype": np.dtype(trt.nptype(dtype)),
"shape": list(shape),
"allocation": allocation,
"size": size,
"is_input": is_input
}

self.bindings.append(binding)
self.allocations.append(allocation)

# Create CUDA stream
err, self.stream = cudart.cudaStreamCreate()
check_cuda_error(err)

def infer(self, input_data: np.ndarray) -> np.ndarray:
"""Run inference on input data"""
# Ensure input is contiguous
input_data = np.ascontiguousarray(input_data)

# Copy input to GPU
input_binding = [b for b in self.bindings if b["is_input"]][0]
err = cudart.cudaMemcpy(
input_binding["allocation"],
input_data.ctypes.data,
input_binding["size"],
cudart.cudaMemcpyKind.cudaMemcpyHostToDevice
)
check_cuda_error(err)

# Set tensor addresses
for i, binding in enumerate(self.bindings):
self.context.set_tensor_address(binding["name"], self.allocations[i])

# Execute inference
self.context.execute_async_v3(stream_handle=self.stream)
err = cudart.cudaStreamSynchronize(self.stream)
check_cuda_error(err)

# Copy output from GPU
output_binding = [b for b in self.bindings if not b["is_input"]][0]
output = np.empty(output_binding["shape"], dtype=output_binding["dtype"])
err = cudart.cudaMemcpy(
output.ctypes.data,
output_binding["allocation"],
output_binding["size"],
cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost
)
check_cuda_error(err)

return output

def __del__(self):
"""Cleanup GPU resources"""
# Free GPU memory
for allocation in self.allocations:
cudart.cudaFree(allocation)

# Destroy stream
if hasattr(self, 'stream'):
cudart.cudaStreamDestroy(self.stream)

# Example usage
if __name__ == "__main__":
# PyTorch can be imported and used without conflicts
import torch

# Create some PyTorch tensors (optional)
torch_tensor = torch.randn(1, 3, 224, 224).cuda()
print(f"PyTorch tensor shape: {torch_tensor.shape}")

# Initialize TensorRT inference - no hanging!
trt_inference = TRTInference("model.trt")

# Run inference
input_data = np.random.randn(1, 3, 224, 224).astype(np.float32)
output = trt_inference.infer(input_data)
print(f"TensorRT output shape: {output.shape}")
```

**Installation:**

```bash
pip install cuda-python tensorrt
```

### Solution 2: Proper PyCUDA Context Management (Alternative)

If you must use PyCUDA, you need to properly manage CUDA contexts to avoid conflicts with PyTorch.

**Implementation:**

```python
import tensorrt as trt
import numpy as np

# IMPORTANT: Import torch AFTER pycuda initialization
import pycuda.driver as cuda
import pycuda.autoinit # This initializes CUDA context

# NOW import torch
import torch

class TRTInference:
def __init__(self, engine_path: str):
# Make sure PyCUDA context is active
cuda.init()

# Get the current context (created by pycuda.autoinit)
self.cuda_ctx = cuda.Device(0).retain_primary_context()
self.cuda_ctx.push()

# Initialize TensorRT
self.logger = trt.Logger(trt.Logger.ERROR)

with open(engine_path, "rb") as f:
runtime = trt.Runtime(self.logger)
self.engine = runtime.deserialize_cuda_engine(f.read())

if self.engine is None:
raise RuntimeError("Failed to load TensorRT engine")

# Now get_binding_shape should work
self.bindings = []
for i in range(self.engine.num_bindings):
shape = tuple(self.engine.get_binding_shape(i))
dtype = trt.nptype(self.engine.get_binding_dtype(i))
name = self.engine.get_binding_name(i)
is_input = self.engine.binding_is_input(i)

self.bindings.append({
"name": name,
"shape": shape,
"dtype": dtype,
"is_input": is_input
})

self.context = self.engine.create_execution_context()

def infer(self, input_data: np.ndarray) -> np.ndarray:
"""Run inference"""
# Ensure context is active
self.cuda_ctx.push()

try:
# Allocate device memory
d_input = cuda.mem_alloc(input_data.nbytes)

# Get output shape and allocate
output_shape = [b["shape"] for b in self.bindings if not b["is_input"]][0]
output_dtype = [b["dtype"] for b in self.bindings if not b["is_input"]][0]
output = np.empty(output_shape, dtype=output_dtype)
d_output = cuda.mem_alloc(output.nbytes)

# Copy input to device
cuda.memcpy_htod(d_input, input_data)

# Create bindings list
bindings = [int(d_input), int(d_output)]

# Execute
self.context.execute_v2(bindings=bindings)

# Copy output to host
cuda.memcpy_dtoh(output, d_output)

return output
finally:
self.cuda_ctx.pop()

def __del__(self):
"""Cleanup"""
if hasattr(self, 'cuda_ctx'):
self.cuda_ctx.pop()

# Example usage
if __name__ == "__main__":
# Initialize TensorRT first
trt_inference = TRTInference("model.trt")

# Now you can use PyTorch
torch_tensor = torch.randn(1, 3, 224, 224).cuda()

# Run TensorRT inference
input_data = np.random.randn(1, 3, 224, 224).astype(np.float32)
output = trt_inference.infer(input_data)
```

### Solution 3: Separate Processes (For Complex Scenarios)

If you need to use both PyTorch and TensorRT extensively, consider running them in separate processes:

```python
import multiprocessing as mp
import numpy as np

def pytorch_process(input_queue, output_queue):
"""Process that handles PyTorch operations"""
import torch

while True:
data = input_queue.get()
if data is None:
break

# PyTorch operations
tensor = torch.from_numpy(data).cuda()
result = tensor.cpu().numpy()
output_queue.put(result)

def tensorrt_process(input_queue, output_queue):
"""Process that handles TensorRT operations"""
import tensorrt as trt
from cuda import cudart

# Initialize TensorRT (no PyTorch imported here)
# ... TensorRT inference code ...

while True:
data = input_queue.get()
if data is None:
break

# TensorRT inference
result = run_trt_inference(data)
output_queue.put(result)

# Main process coordinates between PyTorch and TensorRT
if __name__ == "__main__":
pytorch_in = mp.Queue()
pytorch_out = mp.Queue()
tensorrt_in = mp.Queue()
tensorrt_out = mp.Queue()

# Start processes
p1 = mp.Process(target=pytorch_process, args=(pytorch_in, pytorch_out))
p2 = mp.Process(target=tensorrt_process, args=(tensorrt_in, tensorrt_out))

p1.start()
p2.start()

# Use both without conflicts
# ...
```

## Recommended Migration Path

1. **Install cuda-python**: `pip install cuda-python`
2. **Replace PyCUDA imports** with cuda-python equivalents:
- `import pycuda.driver as cuda` → `from cuda import cudart`
- `cuda.mem_alloc()` → `cudart.cudaMalloc()`
- `cuda.memcpy_htod()` → `cudart.cudaMemcpy(..., cudaMemcpyHostToDevice)`
- `cuda.memcpy_dtoh()` → `cudart.cudaMemcpy(..., cudaMemcpyDeviceToHost)`
3. **Update TensorRT API calls** to use modern APIs:
- Use `engine.num_io_tensors` instead of `engine.num_bindings`
- Use `engine.get_tensor_name()` instead of `engine.get_binding_name()`
- Use `context.execute_async_v3()` instead of `context.execute_v2()`

## References

- [TensorRT Refactored Samples](samples/python/refactored/) - Examples using cuda-python
- [TensorRT Changelog](CHANGELOG.md) - See 10.13.0 GA release notes about cuda-python migration
- [CUDA Python Documentation](https://nvidia.github.io/cuda-python/)
- [TensorRT Python API](https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/)

## Additional Notes

- The TensorRT team officially migrated from PyCUDA to cuda-python in version 10.13.0
- cuda-python provides better support for modern GPUs and CUDA versions
- The quickstart guide explicitly warns: "TensorRT and PyTorch can not be loaded into your Python processes at the same time" when using PyCUDA
- Using cuda-python resolves this limitation

## Testing the Solution

To verify the fix works:

```python
# This should NOT hang anymore
import torch # Import PyTorch first
import tensorrt as trt
from cuda import cudart

# Initialize CUDA
err = cudart.cudaSetDevice(0)
assert err[0] == cudart.cudaError_t.cudaSuccess

# Load TensorRT engine
logger = trt.Logger(trt.Logger.ERROR)
with open("model.trt", "rb") as f:
runtime = trt.Runtime(logger)
engine = runtime.deserialize_cuda_engine(f.read())

# This should work without hanging
for i in range(engine.num_io_tensors):
name = engine.get_tensor_name(i)
shape = engine.get_tensor_shape(name)
print(f"Tensor {i}: {name}, shape: {shape}")

print("Success! No hanging occurred.")
```
Loading