Skip to content
6 changes: 4 additions & 2 deletions tests/pytorch/test_cpu_offloading.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,9 +54,11 @@


class Utils:
# Tensor big engough that both data and scaling factor tensor are bigger than 256 * 1024 elements,
# so that they are offloaded to GPU.
tensor1 = torch.randn((1024, 1024), device="cuda", dtype=torch.bfloat16)
_B = 64
_S = 256
_B = 128
_S = 512
_H = 4
_D = 256

Expand Down
68 changes: 55 additions & 13 deletions transformer_engine/pytorch/cpu_offload.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
from .quantized_tensor import (
restore_from_saved,
prepare_for_saving,
QuantizedTensor,
)


Expand Down Expand Up @@ -255,6 +256,8 @@ def start_offload(self):
Start offloading of tensors. Puts copy from GPU to CPU tasks on offload stream.
Before each copy event, the offload stream waits for the event signalling that the tensor is ready to be offloaded.
This event is recorded in the start_offload or push_tensor call.
Note: tensor_list only contains regular tensors (QuantizedTensors are decomposed in push_tensor).
"""
self._validate_state(func_name="start_offload", allowed_states=["not_offloaded"])
self.state = "offload_started"
Expand All @@ -275,19 +278,18 @@ def start_offload(self):

with torch.cuda.stream(self.offload_stream):
if allocate_cpu_buffers:
# empty_like is defined also for QuantizedTensors
offloaded_tensor = torch.empty_like(
tensor, device=torch.device("cpu"), pin_memory=True
)
self.cpu_tensor_group.tensor_list.append(offloaded_tensor)
else:
assert self.cpu_tensor_group.tensor_list[tensor_id].shape == tensor.shape, (
offloaded_tensor = self.cpu_tensor_group.tensor_list[tensor_id]
assert offloaded_tensor.shape == tensor.shape, (
"CPU buffer shape does not match the offloaded tensor shape:"
f" {self.cpu_tensor_group.tensor_list[tensor_id].shape} != {tensor.shape} "
" Make sure that tensor shaped do not change between"
f" {offloaded_tensor.shape} != {tensor.shape} "
"Make sure that tensor shapes do not change between"
" iterations if retain_pinned_cpu_buffers is True."
)
offloaded_tensor = self.cpu_tensor_group.tensor_list[tensor_id]
offloaded_tensor.copy_(tensor, non_blocking=True)

# aux is a dictionary that contains auxiliary data like information which tensors were deduplicated,
Expand Down Expand Up @@ -318,6 +320,9 @@ def start_reload(self):
"""
Start reloading of tensors.
It allocates new tensors on GPU and puts copy from CPU tasks on offload stream.
Note: tensor_list only contains regular tensors (QuantizedTensors are decomposed in push_tensor
and reconstructed in pop_tensor).
"""
self._validate_state(func_name="start_reload", allowed_states=["offload_finished"])
self.state = "reload_started"
Expand All @@ -330,7 +335,6 @@ def start_reload(self):
# cannot move tensors from pool of one stream to another without
# calling cudaFree and cudaMalloc again.

# empty_like is defined also for QuantizedTensors.
reloaded_tensor = torch.empty_like(tensor, device=torch.device("cuda"))
self.offload_stream.wait_stream(torch.cuda.current_stream())

Expand All @@ -347,16 +351,29 @@ def start_reload(self):
self.bwd_gpu_tensor_group
)

def push_tensor(self, tensor: torch.Tensor) -> int | torch.Tensor:
def push_tensor(self, tensor: torch.Tensor) -> int | torch.Tensor | tuple[list, list]:
"""
It is called when a tensor is saved for backward pass.
If tensor is offloaded, returns int representing the index of the tensor in the offloaded tensor group.
If tensor is not offloaded, returns the tensor itself.
For QuantizedTensor, returns (list of push results for each component, tensor_objs) tuple.
"""
self._validate_state(func_name="push_tensor", allowed_states=["not_offloaded"])

if self._check_if_offload(tensor):
# For QuantizedTensor: decompose into component tensors, push each one recursively
if isinstance(tensor, QuantizedTensor):
# Make a copy because prepare_for_saving modifies the object (sets fields to None)
tensor_copy = tensor.detach()
# Inline prepare_for_saving logic - QuantizedTensor is a torch.Tensor subclass,
# so the generic prepare_for_saving would not call tensor.prepare_for_saving()
saved_tensors, tensor_obj = tensor_copy.prepare_for_saving()
push_results = [
self.push_tensor(t) if t is not None else None for t in saved_tensors
]
return (push_results, [tensor_obj])

self.fwd_gpu_tensor_group.tensor_list.append(tensor)
# The group is processed and offloaded at the end of the forward pass of current layer.
# To enable offloading of tensors faster we use self.offload_stream and record
Expand All @@ -370,23 +387,39 @@ def push_tensor(self, tensor: torch.Tensor) -> int | torch.Tensor:
return len(self.fwd_gpu_tensor_group.tensor_list) - 1
return tensor

def pop_tensor(self, tensor_or_tensor_id: torch.Tensor | int) -> torch.Tensor:
def pop_tensor(
self, tensor_or_tensor_id: torch.Tensor | int | tuple[list, list]
) -> torch.Tensor:
"""
It is called when a tensor is used in backward pass.
Returns the tensor. If tensor was offloaded/reloaded, wait for the reload of a tensor to finish.
For QuantizedTensor (tuple input), reconstructs from component tensors.
"""
self._validate_state(
func_name="pop_tensor", allowed_states=["not_offloaded", "reload_started"]
)

# 1. tensor not offloaded
# 1. tensor not offloaded (regular tensor returned as-is from push)
if isinstance(tensor_or_tensor_id, torch.Tensor):
return tensor_or_tensor_id
# 2. the layer was not offloaded at all

# 2. QuantizedTensor case: tuple of (push_results, tensor_objs)
if isinstance(tensor_or_tensor_id, tuple):
push_results, tensor_objs = tensor_or_tensor_id
# Recursively pop each component
reloaded_tensors = [
self.pop_tensor(pr) if pr is not None else None for pr in push_results
]
# Inline restore_from_saved - tensor_objs[0] is the QuantizedTensor copy
tensor_obj = tensor_objs[0]
tensor_obj.restore_from_saved(reloaded_tensors)
return tensor_obj

# 3. Regular tensor index case
if self.state == "not_offloaded":
return self.fwd_gpu_tensor_group.tensor_list[tensor_or_tensor_id]

# 3. the layer was offloaded
# 4. the layer was offloaded
assert self.state == "reload_started"
# wait for the tensor to be reloaded
torch.cuda.current_stream().wait_event(
Expand All @@ -406,6 +439,10 @@ def _check_if_offload(self, t: torch.Tensor) -> bool:
"""
Check if tensor needs to be offloaded.
"""
# Only offload tensors with at least 256k elements (~1MB for float32)
if t.numel() < 256 * 1024:
return False

if (
not isinstance(t, torch.nn.Parameter)
and not getattr(t, "_TE_do_not_offload", False)
Expand All @@ -418,7 +455,6 @@ def _check_if_offload(self, t: torch.Tensor) -> bool:
" this tensor will be skipped."
)
return False

return True
return False

Expand Down Expand Up @@ -592,6 +628,12 @@ def bwd_step(self, layer_num: int):
for layer in self.start_reload_map[layer_num]:
self.layer_states[layer].start_reload()

def push_tensor(self, tensor: torch.Tensor) -> int | torch.Tensor:
"""Push tensor - skip processing if layer won't be offloaded to reduce CPU overhead."""
if not self.offload_layer_map.get(self.num_of_fwds, False):
return tensor
return self.layer_states[self.num_of_fwds].push_tensor(tensor)

Comment on lines +631 to +636
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The return type annotation for DefaultOffloadSynchronizer.push_tensor() is incomplete and doesn't match the base class signature. This method can return a tuple (when processing QuantizedTensors), but the annotation only specifies int | torch.Tensor.

Suggested change
def push_tensor(self, tensor: torch.Tensor) -> int | torch.Tensor:
"""Push tensor - skip processing if layer won't be offloaded to reduce CPU overhead."""
if not self.offload_layer_map.get(self.num_of_fwds, False):
return tensor
return self.layer_states[self.num_of_fwds].push_tensor(tensor)
def push_tensor(self, tensor: torch.Tensor) -> int | torch.Tensor | tuple[list, list]:
"""Push tensor - skip processing if layer won't be offloaded to reduce CPU overhead."""
if not self.offload_layer_map.get(self.num_of_fwds, False):
return tensor
return self.layer_states[self.num_of_fwds].push_tensor(tensor)


class ManualOffloadSynchronizer(OffloadSynchronizer):
"""
Expand Down Expand Up @@ -637,7 +679,7 @@ def get_cpu_offload_context(
offload_weights: bool = False,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The default value for retain_pinned_cpu_buffers has been changed from False to True. While this may improve performance by reusing CPU buffers across iterations, this is a significant behavioral change that affects memory usage patterns and is not mentioned in the PR description. Consider documenting this change in the commit message and PR description, as it could impact existing users' performance characteristics.

If backward compatibility is important, consider keeping the default as False or provide a migration path for existing code.

Note: If this suggestion doesn't match your team's coding style, reply to this and let me know. I'll remember it for next time!

double_buffering: bool = False, # pylint: disable=unused-argument
manual_synchronization: bool = False,
retain_pinned_cpu_buffers: bool = False,
retain_pinned_cpu_buffers: bool = True,
offload_stream: Optional[torch.cuda.Stream] = None,
):
"""
Expand Down
3 changes: 2 additions & 1 deletion transformer_engine/pytorch/csrc/extensions.h
Original file line number Diff line number Diff line change
Expand Up @@ -254,7 +254,8 @@ std::vector<py::object> multi_tensor_quantize(const std::vector<at::Tensor> &ten

std::vector<py::object> split_quantize(const at::Tensor &tensor,
const std::vector<size_t> &split_sections,
std::vector<py::handle> quantizer_list);
std::vector<py::handle> quantizer_list,
bool disable_bulk_allocation = false);

/***************************************************************************************************
* Bias gradient fusions
Expand Down
37 changes: 20 additions & 17 deletions transformer_engine/pytorch/csrc/extensions/cast.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1095,7 +1095,8 @@ void split_quantize_nvfp4_impl(const TensorWrapper &input,

std::vector<py::object> split_quantize(const at::Tensor &tensor,
const std::vector<size_t> &split_sections,
std::vector<py::handle> quantizer_list) {
std::vector<py::handle> quantizer_list,
bool disable_bulk_allocation) {
init_extension();

// Check number of tensors
Expand Down Expand Up @@ -1147,22 +1148,24 @@ std::vector<py::object> split_quantize(const at::Tensor &tensor,
enum class QuantizationMethod { UNFUSED, FUSED_NVFP4 };
AllocationMethod allocation_method = AllocationMethod::UNFUSED;
QuantizationMethod quantization_method = QuantizationMethod::UNFUSED;
if (std::all_of(quantizer_list.begin(), quantizer_list.end(),
[](const py::handle &quantizer) -> bool {
return detail::IsFloat8BlockwiseQuantizers(quantizer.ptr());
})) {
allocation_method = AllocationMethod::BULK_FP8_BLOCKWISE;
} else if (std::all_of(quantizer_list.begin(), quantizer_list.end(),
[](const py::handle &quantizer) -> bool {
return detail::IsMXFP8Quantizers(quantizer.ptr());
})) {
allocation_method = AllocationMethod::BULK_MXFP8;
} else if (std::all_of(quantizer_list.begin(), quantizer_list.end(),
[](const py::handle &quantizer) -> bool {
return detail::IsNVFP4Quantizers(quantizer.ptr());
})) {
allocation_method = AllocationMethod::BULK_NVFP4;
quantization_method = QuantizationMethod::FUSED_NVFP4;
if (!disable_bulk_allocation) {
if (std::all_of(quantizer_list.begin(), quantizer_list.end(),
[](const py::handle &quantizer) -> bool {
return detail::IsFloat8BlockwiseQuantizers(quantizer.ptr());
})) {
allocation_method = AllocationMethod::BULK_FP8_BLOCKWISE;
} else if (std::all_of(quantizer_list.begin(), quantizer_list.end(),
[](const py::handle &quantizer) -> bool {
return detail::IsMXFP8Quantizers(quantizer.ptr());
})) {
allocation_method = AllocationMethod::BULK_MXFP8;
} else if (std::all_of(quantizer_list.begin(), quantizer_list.end(),
[](const py::handle &quantizer) -> bool {
return detail::IsNVFP4Quantizers(quantizer.ptr());
})) {
allocation_method = AllocationMethod::BULK_NVFP4;
quantization_method = QuantizationMethod::FUSED_NVFP4;
}
}

// Allocate output tensors
Expand Down
2 changes: 1 addition & 1 deletion transformer_engine/pytorch/csrc/extensions/pybind.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -248,7 +248,7 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
"Multi-tensor quantize", py::arg("tensor_list"), py::arg("quantizer_list"));
m.def("split_quantize", &transformer_engine::pytorch::split_quantize,
"Split and multi-tensor quantize", py::arg("tensor"), py::arg("split_sections"),
py::arg("quantizer_list"));
py::arg("quantizer_list"), py::arg("disable_bulk_allocation") = false);
m.def("te_general_grouped_gemm", &transformer_engine::pytorch::te_general_grouped_gemm,
"Grouped GEMM");
m.def("fp8_transpose", &transformer_engine::pytorch::fp8_transpose, "Transpose with FP8 I/O",
Expand Down
4 changes: 3 additions & 1 deletion transformer_engine/pytorch/module/grouped_linear.py
Original file line number Diff line number Diff line change
Expand Up @@ -143,7 +143,9 @@ def forward(
inp_view = inp.reshape(-1, in_features)
inputmats: list
if fp8 and not debug:
inputmats = tex.split_quantize(inp_view, m_splits, input_quantizers)
inputmats = tex.split_quantize(
inp_view, m_splits, input_quantizers, disable_bulk_allocation=cpu_offloading
)
elif debug:
inputmats = DebugQuantizer.multi_tensor_quantize(
inp_view, input_quantizers, m_splits, activation_dtype
Expand Down
3 changes: 2 additions & 1 deletion transformer_engine/pytorch/module/linear.py
Original file line number Diff line number Diff line change
Expand Up @@ -428,7 +428,8 @@ def forward(
# weights if weights are externally touched outside this module
ctx.weight_object = weight

mark_not_offload(weight, weightmat, bias)
if cpu_offloading:
mark_not_offload(weight, weightmat, bias)
# TODO(ksivamani): Check memory usage
tensors_to_save, tensor_objects = prepare_for_saving(
saved_inputmat,
Expand Down
7 changes: 5 additions & 2 deletions transformer_engine/pytorch/optimizers/fused_adam.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
from torch.distributed._tensor import DTensor
import transformer_engine_torch as tex
from transformer_engine.pytorch.tensor.float8_tensor import Float8Tensor, Float8Quantizer
from transformer_engine.pytorch.quantized_tensor import QuantizedTensor
from .multi_tensor_apply import multi_tensor_applier


Expand Down Expand Up @@ -372,10 +373,12 @@ def _initialize_state(
store_param_remainders (bool): Store only trailing remainder bits.
"""
dtype = self.name_to_dtype_map[state_name]
# Handle QuantizedTensor by dequantizing first
param_for_empty = param.dequantize() if isinstance(param, QuantizedTensor) else param
if store_param_remainders:
data = torch.zeros(param.shape, dtype=torch.int16, device=param.device)
data = torch.zeros_like(param_for_empty, dtype=torch.int16)
else:
data = torch.empty(param.shape, dtype=dtype, device=param.device)
data = torch.empty_like(param_for_empty, dtype=dtype)
Comment on lines 375 to +381
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The dequantization of QuantizedTensor parameters here breaks DTensor sharding preservation. When param is a QuantizedTensor wrapping a DTensor, calling dequantize() creates a new plain tensor that loses the DTensor sharding metadata. This defeats the purpose of using .empty_like() to preserve DTensor sharding.

The fix should use the original parameter directly without dequantization, since .empty_like() respects the sharding annotations of the input tensor regardless of whether it's quantized:

Suggested change
dtype = self.name_to_dtype_map[state_name]
# Handle QuantizedTensor by dequantizing first
param_for_empty = param.dequantize() if isinstance(param, QuantizedTensor) else param
if store_param_remainders:
data = torch.zeros(param.shape, dtype=torch.int16, device=param.device)
data = torch.zeros_like(param_for_empty, dtype=torch.int16)
else:
data = torch.empty(param.shape, dtype=dtype, device=param.device)
data = torch.empty_like(param_for_empty, dtype=dtype)
data = torch.zeros_like(param, dtype=torch.int16)
...
data = torch.empty_like(param, dtype=dtype)

Alternatively, if dequantization is necessary for some reason, the sharding information from the original parameter should be explicitly preserved.

if zero_buffer:
data.zero_()

Expand Down
14 changes: 0 additions & 14 deletions transformer_engine/pytorch/quantized_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,11 +20,6 @@
_stride_from_shape,
)

_quantized_tensor_cpu_supported_ops = (
torch.ops.aten.empty_like.default,
torch.ops.aten.copy_.default,
)


class QuantizedTensorStorage:
r"""Base class for all TensorStorage classes.
Expand Down Expand Up @@ -539,15 +534,6 @@ def __torch_function__(cls, func, types, args=(), kwargs=None):
if kwargs is None:
kwargs = {}

def check_if_cpu(arg):
if isinstance(cls, QuantizedTensor) and arg.device.type == "cpu":
assert (
func in _quantized_tensor_cpu_supported_ops
), f"QuantizedTensor on CPU does not support this operation: {func}"
return arg

args = tree_map(check_if_cpu, args)

# Do not force the QuantizedTensor type on the returned tensor
return torch._C._disabled_torch_function_impl(func, types, args, kwargs)

Expand Down
Loading