Skip to content
Open
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 13 additions & 20 deletions README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ Transformer Engine
Latest News
===========

* [12/2025] `NVIDIA Nemotron 3: Efficient and Open Intelligence <https://arxiv.org/abs/2512.20856>`_ - trained with NVFP4 on Transformer Engine
* [11/2025] `NVIDIA Blackwell Architecture Sweeps MLPerf Training v5.1 Benchmarks <https://developer.nvidia.com/blog/nvidia-blackwell-architecture-sweeps-mlperf-training-v5-1-benchmarks/>`_
* [11/2025] `Scale Biology Transformer Models with PyTorch and NVIDIA BioNeMo Recipes <https://developer.nvidia.com/blog/scale-biology-transformer-models-with-pytorch-and-nvidia-bionemo-recipes/>`_
* [11/2025] `FP8 Training of Large-Scale RL Models <https://lmsys.org/blog/2025-11-25-fp8-rl/>`_
Expand All @@ -30,7 +31,8 @@ What is Transformer Engine?

Transformer Engine (TE) is a library for accelerating Transformer models on NVIDIA GPUs, including
using 8-bit floating point (FP8) precision on Hopper, Ada, and Blackwell GPUs, to provide better
performance with lower memory utilization in both training and inference. TE provides a collection
performance with lower memory utilization in both training and inference. On Blackwell GPUs, TE also
supports MXFP8 (Microscaling FP8) and NVFP4 formats for even greater efficiency. TE provides a collection
of highly optimized building blocks for popular Transformer architectures and an automatic mixed
precision-like API that can be used seamlessly with your framework-specific code. TE also includes a
framework agnostic C++ API that can be integrated with other deep learning libraries to enable FP8
Expand Down Expand Up @@ -58,6 +60,7 @@ Highlights
* Easy-to-use modules for building Transformer layers with FP8 support
* Optimizations (e.g. fused kernels) for Transformer models
* Support for FP8 on NVIDIA Hopper, Ada, and Blackwell GPUs
* Support for MXFP8 and NVFP4 on NVIDIA Blackwell GPUs
* Support for optimizations across all precisions (FP16, BF16) on NVIDIA Ampere GPU architecture generations and later

Examples
Expand Down Expand Up @@ -91,6 +94,7 @@ PyTorch
loss = out.sum()
loss.backward()

For a tutorial with more details, see the `Quickstart Notebook <https://github.com/NVIDIA/TransformerEngine/blob/main/docs/examples/quickstart.ipynb>`_.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The referenced quickstart.ipynb file does not exist in docs/examples/. The actual notebooks in that directory are fp8_primer.ipynb, advanced_optimizations.ipynb, and te_jax_integration.ipynb. Consider using one of these existing notebooks or creating the quickstart notebook before merging.


JAX
^^^
Expand Down Expand Up @@ -175,15 +179,15 @@ For example to use the NGC PyTorch container interactively,

.. code-block:: bash

docker run --gpus all -it --rm nvcr.io/nvidia/pytorch:25.08-py3
docker run --gpus all -it --rm nvcr.io/nvidia/pytorch:26.01-py3

For example to use the NGC JAX container interactively,

.. code-block:: bash

docker run --gpus all -it --rm nvcr.io/nvidia/jax:25.08-py3
docker run --gpus all -it --rm nvcr.io/nvidia/jax:26.01-py3

Where 25.08 (corresponding to August 2025 release) is the container version.
Where 26.01 (corresponding to January 2026 release) is the container version.

**Benefits of using NGC containers:**

Expand Down Expand Up @@ -343,46 +347,35 @@ FP8 has been tested extensively across different model architectures and configu
+------------+------------------+---------------------------------------------------------------------------------------------------------+
| Model | Framework | Source |
+============+==================+=========================================================================================================+
| T5-770M | JAX/T5x | https://github.com/NVIDIA/JAX-Toolbox/tree/main/rosetta/rosetta/projects/t5x#convergence-and-performance|
+------------+------------------+---------------------------------------------------------------------------------------------------------+
| MPT-1.3B | Mosaic Composer | https://www.mosaicml.com/blog/coreweave-nvidia-h100-part-1 |
+------------+------------------+---------------------------------------------------------------------------------------------------------+
| GPT-5B | JAX/Paxml | https://github.com/NVIDIA/JAX-Toolbox/tree/main/rosetta/rosetta/projects/pax#h100-results |
+------------+------------------+---------------------------------------------------------------------------------------------------------+
| GPT-5B | NeMo Framework | Available on request |
+------------+------------------+---------------------------------------------------------------------------------------------------------+
| LLama2-7B | Alibaba Pai | https://mp.weixin.qq.com/s/NQT0uKXLbXyh5031zBdeBQ |
+------------+------------------+---------------------------------------------------------------------------------------------------------+
| T5-11B | JAX/T5x | Available on request |
| LLM-8B | Megatron Core | https://arxiv.org/abs/2506.08027 |
+------------+------------------+---------------------------------------------------------------------------------------------------------+
| MPT-13B | Mosaic Composer | https://www.databricks.com/blog/turbocharged-training-optimizing-databricks-mosaic-ai-stack-fp8 |
+------------+------------------+---------------------------------------------------------------------------------------------------------+
| GPT-22B | NeMo Framework | Available on request |
| MoE-16B | Megatron Core | https://arxiv.org/abs/2506.08027 |
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

extra whitespace in "Megatron Core" framework names - inconsistent with other rows

Suggested change
| LLM-8B | Megatron Core | https://arxiv.org/abs/2506.08027 |
+------------+------------------+---------------------------------------------------------------------------------------------------------+
| MPT-13B | Mosaic Composer | https://www.databricks.com/blog/turbocharged-training-optimizing-databricks-mosaic-ai-stack-fp8 |
+------------+------------------+---------------------------------------------------------------------------------------------------------+
| GPT-22B | NeMo Framework | Available on request |
| MoE-16B | Megatron Core | https://arxiv.org/abs/2506.08027 |
| LLM-8B | Megatron Core | https://arxiv.org/abs/2506.08027 |
+------------+------------------+---------------------------------------------------------------------------------------------------------+
| MPT-13B | Mosaic Composer | https://www.databricks.com/blog/turbocharged-training-optimizing-databricks-mosaic-ai-stack-fp8 |
+------------+------------------+---------------------------------------------------------------------------------------------------------+
| MoE-16B | Megatron Core | https://arxiv.org/abs/2506.08027 |

Note: If this suggestion doesn't match your team's coding style, reply to this and let me know. I'll remember it for next time!

+------------+------------------+---------------------------------------------------------------------------------------------------------+
| LLama2-70B | Alibaba Pai | https://mp.weixin.qq.com/s/NQT0uKXLbXyh5031zBdeBQ |
+------------+------------------+---------------------------------------------------------------------------------------------------------+
| GPT-175B | JAX/Paxml | https://github.com/NVIDIA/JAX-Toolbox/tree/main/rosetta/rosetta/projects/pax#h100-results |
+------------+------------------+---------------------------------------------------------------------------------------------------------+

Integrations
============

Transformer Engine has been integrated with popular LLM frameworks such as:

* `DeepSpeed <https://github.com/deepspeedai/DeepSpeed/blob/master/tests/unit/runtime/half_precision/test_fp8.py>`_
* `DeepSpeed <https://github.com/deepspeedai/DeepSpeed>`_
* `Hugging Face Accelerate <https://huggingface.co/docs/accelerate/main/en/usage_guides/low_precision_training#configuring-transformersengine>`_
* `Lightning <https://github.com/Lightning-AI/lightning/issues/17172>`_
* `Lightning <https://lightning.ai/docs/pytorch/stable/common/precision.html>`_
* `MosaicML Composer <https://github.com/mosaicml/composer/releases/tag/v0.13.1>`_
* `NVIDIA JAX Toolbox <https://github.com/NVIDIA/JAX-Toolbox>`_
* `NVIDIA Megatron-LM <https://github.com/NVIDIA/Megatron-LM>`_
* `NVIDIA NeMo Framework <https://github.com/NVIDIA/NeMo-Megatron-Launcher>`_
* `Amazon SageMaker Model Parallel Library <https://docs.aws.amazon.com/sagemaker/latest/dg/model-parallel-core-features-v2-tensor-parallelism.html>`_
* `Levanter <https://github.com/stanford-crfm/levanter>`_
* `GPT-NeoX <https://github.com/EleutherAI/gpt-neox>`_
* `Hugging Face Nanotron <https://github.com/huggingface/nanotron>`_ - Coming soon!
* `Colossal-AI <https://github.com/hpcaitech/ColossalAI>`_ - Coming soon!
* `PeriFlow <https://github.com/friendliai/periflow-python-sdk>`_ - Coming soon!

* `Hugging Face Nanotron <https://github.com/huggingface/nanotron>`_

Contributing
============
Expand Down
Loading