-
Notifications
You must be signed in to change notification settings - Fork 342
Enhance Multi-Node NCCL Testing with Torch C10D Gloo Framework #243
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -34,8 +34,13 @@ NVCC_GENCODE ?= -gencode=arch=compute_35,code=sm_35 \ | |
| -gencode=arch=compute_70,code=compute_70 | ||
| endif | ||
|
|
||
| ifeq ($(GLOO), 1) | ||
| NVCUFLAGS := -ccbin $(CXX) $(NVCC_GENCODE) -std=c++17 | ||
| CXXFLAGS := -std=c++17 | ||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I don't think we can force all users to move to c++17 just for this feature.
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I agreed. I can feature-ize the compiling to C++17 only for GLOO. |
||
| else | ||
| NVCUFLAGS := -ccbin $(CXX) $(NVCC_GENCODE) -std=c++11 | ||
| CXXFLAGS := -std=c++11 | ||
| endif | ||
|
|
||
| LDFLAGS := -L${CUDA_LIB} -lcudart -lrt | ||
| NVLDFLAGS := -L${CUDA_LIB} -l${CUDARTLIB} -lrt | ||
|
|
@@ -70,6 +75,13 @@ ifeq ($(MPI_IBM),1) | |
| NVCUFLAGS += -DMPI_SUPPORT | ||
| NVLDFLAGS += -lmpi_ibm | ||
| endif | ||
| ifeq ($(GLOO), 1) | ||
| PYTHON_CONFIG := python3-config | ||
| PYTHON_INCLUDE := $(shell $(PYTHON_CONFIG) --includes) | ||
| TORCH_HOME ?= /usr/local/libtorch | ||
| NVCUFLAGS += -D_GLIBCXX_USE_CXX11_ABI=0 -DUSE_C10D_GLOO $(PYTHON_INCLUDE) -isystem $(TORCH_HOME)/include -isystem $(TORCH_HOME)/include/torch/csrc/api/include | ||
| NVLDFLAGS += -L$(TORCH_HOME)/lib -lc10 -ltorch_cpu | ||
| endif | ||
| LIBRARIES += nccl | ||
| NVLDFLAGS += $(LIBRARIES:%=-l%) | ||
|
|
||
|
|
||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -10,10 +10,21 @@ | |
| #include <type_traits> | ||
| #include <getopt.h> | ||
| #include <libgen.h> | ||
| #include <string> | ||
| #include <type_traits> | ||
| #include "cuda.h" | ||
|
|
||
| #include "../verifiable/verifiable.h" | ||
|
|
||
| #ifdef USE_C10D_GLOO | ||
| #include <torch/torch.h> | ||
| #include <torch/csrc/distributed/c10d/c10d.h> | ||
| #include <torch/csrc/distributed/c10d/ProcessGroupGloo.hpp> | ||
| #include <torch/csrc/distributed/c10d/TCPStore.hpp> | ||
| #include <torch/csrc/distributed/c10d/Types.hpp> | ||
| #include <gloo/transport/tcp/device.h> | ||
| #endif /* USE_C10D_GLOO */ | ||
|
|
||
| int test_ncclVersion = 0; // init'd with ncclGetVersion() | ||
|
|
||
| #if NCCL_MAJOR >= 2 | ||
|
|
@@ -55,6 +66,19 @@ extern "C" __attribute__((weak)) char const* ncclGetLastError(ncclComm_t comm) { | |
| return ""; | ||
| } | ||
|
|
||
| // If 'use_c10d_gloo' is true, use pytorch c10d GLOO distributed framework for | ||
| // multi-process multi-node NCCL testing. The following environment variables | ||
| // will be used: | ||
| // - MASTER_ADDR: Master IP address where gloo server is running. | ||
| // - MASTER_PORT: Master port where gloo server is listening. | ||
| // - RANK: Global rank of the process. | ||
| // - WORLD_SIZE: Total number of processes. | ||
| bool use_c10d_gloo = false; | ||
|
|
||
| #ifdef USE_C10D_GLOO | ||
| std::shared_ptr<c10d::ProcessGroupGloo> c10d_process_group; | ||
| #endif /* USE_C10D_GLOO */ | ||
|
|
||
| int is_main_proc = 0; | ||
| thread_local int is_main_thread = 0; | ||
|
|
||
|
|
@@ -151,9 +175,15 @@ void Barrier(struct threadArgs *args) { | |
| if(args->thread+1 == args->nThreads) { | ||
| while(counter[epoch] != args->nThreads) | ||
| pthread_cond_wait(&cond[epoch], &lock[epoch]); | ||
| #ifdef MPI_SUPPORT | ||
| MPI_Barrier(MPI_COMM_WORLD); | ||
| #endif | ||
| if (!use_c10d_gloo) { | ||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I don't understand why we need a boolean and these new if statements.
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This boolean helps to enforce only one transport is picked at run time, if user ever builds with both MPI=1 and GLOO=1 in one single binary. |
||
| #ifdef MPI_SUPPORT | ||
| MPI_Barrier(MPI_COMM_WORLD); | ||
| #endif | ||
| } else { | ||
| #ifdef USE_C10D_GLOO | ||
| c10d_process_group->barrier()->wait(); | ||
| #endif | ||
| } | ||
| counter[epoch] = 0; | ||
| pthread_cond_broadcast(&cond[epoch]); | ||
| } | ||
|
|
@@ -165,6 +195,28 @@ void Barrier(struct threadArgs *args) { | |
| epoch ^= 1; | ||
| } | ||
|
|
||
| #ifdef USE_C10D_GLOO | ||
| template<typename T> | ||
| struct torch_type; | ||
|
|
||
| template<> | ||
| struct torch_type<long long> { | ||
| static at::ScalarType type() { return at::kLong; } | ||
| static long long value(const at::Tensor& tensor) { return tensor.item().toLong(); } | ||
| }; | ||
|
|
||
| template<> | ||
| struct torch_type<double> { | ||
| static at::ScalarType type() { return at::kDouble; } | ||
| static double value(const at::Tensor& tensor) { return tensor.item().toDouble(); } | ||
| }; | ||
|
|
||
| template<typename T> | ||
| at::Tensor create_tensor_from_blob(T* data, int64_t size) { | ||
| return torch::from_blob(data, {size}, torch_type<T>::type()); | ||
| } | ||
| #endif | ||
|
|
||
| // Inter-thread/process barrier+allreduce. The quality of the return value | ||
| // for average=0 (which means broadcast from rank=0) is dubious. The returned | ||
| // value will actually be the result of process-local broadcast from the local thread=0. | ||
|
|
@@ -196,19 +248,34 @@ void Allreduce(struct threadArgs* args, T* value, int average) { | |
| while(counter[epoch] != args->nThreads) | ||
| pthread_cond_wait(&cond[epoch], &lock[epoch]); | ||
|
|
||
| #ifdef MPI_SUPPORT | ||
| if(average != 0) { | ||
| static_assert(std::is_same<T, long long>::value || std::is_same<T, double>::value, "Allreduce<T> only for T in {long long, double}"); | ||
| MPI_Datatype ty = std::is_same<T, long long>::value ? MPI_LONG_LONG : | ||
| std::is_same<T, double>::value ? MPI_DOUBLE : | ||
| MPI_Datatype(); | ||
| MPI_Op op = average == 1 ? MPI_SUM : | ||
| average == 2 ? MPI_MIN : | ||
| average == 3 ? MPI_MAX : | ||
| average == 4 ? MPI_SUM : MPI_Op(); | ||
| MPI_Allreduce(MPI_IN_PLACE, (void*)&accumulator[epoch], 1, ty, op, MPI_COMM_WORLD); | ||
| if (!use_c10d_gloo) { | ||
| #ifdef MPI_SUPPORT | ||
| MPI_Datatype ty = std::is_same<T, long long>::value ? MPI_LONG_LONG : | ||
| std::is_same<T, double>::value ? MPI_DOUBLE : | ||
| MPI_Datatype(); | ||
| MPI_Op op = average == 1 ? MPI_SUM : | ||
| average == 2 ? MPI_MIN : | ||
| average == 3 ? MPI_MAX : | ||
| average == 4 ? MPI_SUM : MPI_Op(); | ||
| MPI_Allreduce(MPI_IN_PLACE, (void*)&accumulator[epoch], 1, ty, op, MPI_COMM_WORLD); | ||
| #endif | ||
| } | ||
| else { | ||
| #ifdef USE_C10D_GLOO | ||
| c10d::AllreduceOptions opts; | ||
| opts.reduceOp = average == 2 ? c10d::ReduceOp::MIN : | ||
| average == 3 ? c10d::ReduceOp::MAX : | ||
| c10d::ReduceOp::SUM; | ||
|
|
||
| auto tensor = create_tensor_from_blob(&accumulator[epoch], 1); | ||
| std::vector<at::Tensor> input_tensors{tensor}; | ||
| c10d_process_group->allreduce(input_tensors, opts)->wait(); | ||
| //accumulator[epoch] = torch_type<T>::value(input_tensors[0]); | ||
| #endif | ||
| } | ||
| } | ||
| #endif | ||
|
|
||
| if(average == 1) accumulator[epoch] /= args->totalProcs*args->nThreads; | ||
| counter[epoch] = 0; | ||
|
|
@@ -870,8 +937,51 @@ int main(int argc, char* argv[]) { | |
| (unsigned long long)maxBytes); | ||
| return -1; | ||
| } | ||
|
|
||
| #ifdef USE_C10D_GLOO | ||
| { | ||
| // Parse c10d GLOO distributed framework environment variables. | ||
| char *str = getenv("MASTER_ADDR"); | ||
| if (str) { | ||
| std::string master_addr = str; | ||
| use_c10d_gloo = true; | ||
|
|
||
| str = getenv("MASTER_PORT"); | ||
| uint16_t master_port = str ? static_cast<uint16_t>(std::stoi(str)) : 29500; | ||
|
|
||
| str = getenv("RANK"); | ||
| int rank = str? std::stoi(str) : 0; | ||
|
|
||
| str = getenv("WORLD_SIZE"); | ||
| int world_size = str ? std::stoi(str) : 1; | ||
|
|
||
| auto options = c10d::ProcessGroupGloo::Options::create(); | ||
| // Create Gloo device that binds to any interface. | ||
| ::gloo::transport::tcp::attr tcp_attr; | ||
| str = getenv("GLOO_INTERFACE"); | ||
| tcp_attr.iface = str ? str : "eth0"; | ||
| auto gloo_device = ::gloo::transport::tcp::CreateDevice(tcp_attr); | ||
| options->devices.push_back(gloo_device); | ||
|
|
||
| c10d::TCPStoreOptions store_opts; | ||
| store_opts.port = master_port; | ||
| if (rank == 0) { | ||
| store_opts.isServer = true; | ||
| } | ||
| auto store_ptr = c10::make_intrusive<c10d::TCPStore>( | ||
| master_addr, store_opts); | ||
|
|
||
| // Create the ProcessGroupGloo | ||
| c10d_process_group = std::make_shared<c10d::ProcessGroupGloo>( | ||
| store_ptr, rank, world_size, options); | ||
| } | ||
| } | ||
| #endif /* USE_C10D_GLOO */ | ||
|
|
||
| #ifdef MPI_SUPPORT | ||
| MPI_Init(&argc, &argv); | ||
| if (!use_c10d_gloo) { | ||
| MPI_Init(&argc, &argv); | ||
| } | ||
| #endif | ||
| TESTCHECK(run()); | ||
| return 0; | ||
|
|
@@ -884,24 +994,51 @@ testResult_t run() { | |
| getHostName(hostname, 1024); | ||
|
|
||
| #ifdef MPI_SUPPORT | ||
| MPI_Comm_size(MPI_COMM_WORLD, &totalProcs); | ||
| MPI_Comm_rank(MPI_COMM_WORLD, &proc); | ||
| uint64_t hostHashs[totalProcs]; | ||
| hostHashs[proc] = getHostHash(hostname); | ||
| MPI_Allgather(MPI_IN_PLACE, 0, MPI_DATATYPE_NULL, hostHashs, sizeof(uint64_t), MPI_BYTE, MPI_COMM_WORLD); | ||
| for (int p=0; p<totalProcs; p++) { | ||
| if (p == proc) break; | ||
| if (hostHashs[p] == hostHashs[proc]) localRank++; | ||
| } | ||
|
|
||
| char* str = getenv("NCCL_TESTS_SPLIT_MASK"); | ||
| uint64_t mask = str ? strtoul(str, NULL, 16) : 0; | ||
| MPI_Comm mpi_comm; | ||
| color = proc & mask; | ||
| MPI_Comm_split(MPI_COMM_WORLD, color, proc, &mpi_comm); | ||
| MPI_Comm_size(mpi_comm, &ncclProcs); | ||
| MPI_Comm_rank(mpi_comm, &ncclProc); | ||
| #endif | ||
|
|
||
| if (!use_c10d_gloo) { | ||
| #ifdef MPI_SUPPORT | ||
| MPI_Comm_size(MPI_COMM_WORLD, &totalProcs); | ||
| MPI_Comm_rank(MPI_COMM_WORLD, &proc); | ||
| uint64_t hostHashs[totalProcs]; | ||
| hostHashs[proc] = getHostHash(hostname); | ||
| MPI_Allgather(MPI_IN_PLACE, 0, MPI_DATATYPE_NULL, hostHashs, sizeof(uint64_t), MPI_BYTE, MPI_COMM_WORLD); | ||
| for (int p=0; p<totalProcs; p++) { | ||
| if (p == proc) break; | ||
| if (hostHashs[p] == hostHashs[proc]) localRank++; | ||
| } | ||
|
|
||
| char* str = getenv("NCCL_TESTS_SPLIT_MASK"); | ||
| uint64_t mask = str ? strtoul(str, NULL, 16) : 0; | ||
| color = proc & mask; | ||
| MPI_Comm_split(MPI_COMM_WORLD, color, proc, &mpi_comm); | ||
| MPI_Comm_size(mpi_comm, &ncclProcs); | ||
| MPI_Comm_rank(mpi_comm, &ncclProc); | ||
| #endif | ||
| } else { | ||
| #ifdef USE_C10D_GLOO | ||
| ncclProcs = totalProcs = c10d_process_group->getSize(); | ||
| ncclProc = proc = c10d_process_group->getRank(); | ||
| uint64_t hostHash = getHostHash(hostname); | ||
|
|
||
| auto tensor = torch::tensor({(int64_t)hostHash}, torch::kLong); | ||
| std::vector<at::Tensor> input_tensors{tensor}; | ||
| std::vector<std::vector<torch::Tensor>> output_tensors; | ||
| output_tensors.emplace_back(); | ||
| for (const auto ii : c10::irange(totalProcs)) { | ||
| output_tensors.front().emplace_back(at::empty_like(tensor)); | ||
| } | ||
|
|
||
| c10d_process_group->allgather(output_tensors, input_tensors)->wait(); | ||
|
|
||
| for (int p = 0; p < output_tensors[0].size(); p++) { | ||
| if (p == proc) break; | ||
| if ((uint64_t)output_tensors[0][p].item().toLong() == hostHash) localRank++; | ||
| } | ||
| #endif | ||
| } | ||
|
|
||
| is_main_thread = is_main_proc = (proc == 0) ? 1 : 0; | ||
|
|
||
| PRINT("# nThread %d nGpus %d minBytes %ld maxBytes %ld step: %ld(%s) warmup iters: %d iters: %d agg iters: %d validation: %d graph: %d\n", | ||
|
|
@@ -929,6 +1066,7 @@ testResult_t run() { | |
| maxMem = std::min(maxMem, prop.totalGlobalMem); | ||
| } | ||
|
|
||
| if (!use_c10d_gloo) { | ||
| #if MPI_SUPPORT | ||
| char *lines = (proc == 0) ? (char *)malloc(totalProcs*MAX_LINE) : NULL; | ||
| // Gather all output in rank order to root (0) | ||
|
|
@@ -942,6 +1080,39 @@ testResult_t run() { | |
| #else | ||
| PRINT("%s", line); | ||
| #endif | ||
| } else { | ||
| #ifdef USE_C10D_GLOO | ||
| { | ||
| auto tensor = torch::from_blob((void*)line, {MAX_LINE}, torch::kUInt8); | ||
| std::vector<at::Tensor> input_tensors{tensor}; | ||
| std::vector<std::vector<torch::Tensor>> output_tensors; | ||
| if (proc == 0) { | ||
| output_tensors.emplace_back(); | ||
| for (const auto i : c10::irange(totalProcs)) { | ||
| output_tensors.front().emplace_back(at::empty_like(tensor)); | ||
| } | ||
| } | ||
|
|
||
| c10d::GatherOptions opts; | ||
| opts.rootRank = 0; | ||
| c10d_process_group->gather(output_tensors, input_tensors, opts)->wait(); | ||
| if (proc == 0) { | ||
| for (int ii = 0; ii < totalProcs; ++ii) { | ||
| PRINT("%s", output_tensors[0][ii].data_ptr<uint8_t>()); | ||
| } | ||
| } | ||
| } | ||
|
|
||
| { | ||
| auto tensor = torch::tensor({(int64_t)maxMem}, torch::kLong); | ||
| std::vector<at::Tensor> input_tensors{tensor}; | ||
| c10d::AllreduceOptions opts; | ||
| opts.reduceOp = c10d::ReduceOp::MIN; | ||
| c10d_process_group->allreduce(input_tensors, opts)->wait(); | ||
| maxMem = (size_t)input_tensors[0].item().toLong(); | ||
| } | ||
| #endif | ||
| } | ||
|
|
||
| // We need sendbuff, recvbuff, expected (when datacheck enabled), plus 1G for the rest. | ||
| size_t memMaxBytes = (maxMem - (1<<30)) / (datacheck ? 3 : 2); | ||
|
|
@@ -954,10 +1125,24 @@ testResult_t run() { | |
| if (ncclProc == 0) { | ||
| NCCLCHECK(ncclGetUniqueId(&ncclId)); | ||
| } | ||
| if (!use_c10d_gloo) { | ||
| #ifdef MPI_SUPPORT | ||
| MPI_Bcast(&ncclId, sizeof(ncclId), MPI_BYTE, 0, mpi_comm); | ||
| MPI_Barrier(MPI_COMM_WORLD); // Ensure Bcast is complete for HCOLL | ||
| MPI_Bcast(&ncclId, sizeof(ncclId), MPI_BYTE, 0, mpi_comm); | ||
| MPI_Barrier(MPI_COMM_WORLD); // Ensure Bcast is complete for HCOLL | ||
| #endif | ||
| } else { | ||
| #ifdef USE_C10D_GLOO | ||
| auto ncclId_tensor = torch::from_blob(ncclId.internal, | ||
| {static_cast<int64_t>(sizeof(ncclId.internal))}, torch::kByte); | ||
| std::vector<at::Tensor> ncclId_tensor_vector = {ncclId_tensor}; | ||
| c10d::BroadcastOptions opts; | ||
| opts.rootRank = 0; | ||
| c10d_process_group->broadcast(ncclId_tensor_vector, opts)->wait(); | ||
| c10d_process_group->barrier()->wait(); | ||
|
|
||
| // Other ranks will receive the 'ncclId' once they reach here. | ||
| #endif | ||
| } | ||
| int gpus[nGpus*nThreads]; | ||
| cudaStream_t streams[nGpus*nThreads]; | ||
| void* sendbuffs[nGpus*nThreads]; | ||
|
|
@@ -1074,9 +1259,20 @@ testResult_t run() { | |
| } | ||
| } | ||
|
|
||
| if (!use_c10d_gloo) { | ||
| #ifdef MPI_SUPPORT | ||
| MPI_Allreduce(MPI_IN_PLACE, &errors[0], 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); | ||
| MPI_Allreduce(MPI_IN_PLACE, &errors[0], 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); | ||
| #endif | ||
| } else { | ||
| #ifdef USE_C10D_GLOO | ||
| auto tensor = torch::tensor({errors[0]}, torch::kLong); | ||
| std::vector<at::Tensor> input_tensors{tensor}; | ||
| c10d::AllreduceOptions opts; | ||
| opts.reduceOp = c10d::ReduceOp::SUM; | ||
| c10d_process_group->allreduce(input_tensors, opts)->wait(); | ||
| errors[0] = input_tensors[0].item().toLong(); | ||
| #endif | ||
| } | ||
|
|
||
| if (!parallel_init) { | ||
| for(int i=0; i<nGpus*nThreads; ++i) { | ||
|
|
@@ -1114,10 +1310,12 @@ testResult_t run() { | |
| PRINT("# Out of bounds values : %d %s\n", errors[0], errors[0] ? "FAILED" : "OK"); | ||
| PRINT("# Avg bus bandwidth : %g %s\n", bw[0], check_avg_bw == -1 ? "" : (bw[0] < check_avg_bw*(0.9) ? "FAILED" : "OK")); | ||
| PRINT("#\n"); | ||
| if (!use_c10d_gloo) { | ||
| #ifdef MPI_SUPPORT | ||
| MPI_Comm_free(&mpi_comm); | ||
| MPI_Finalize(); | ||
| MPI_Comm_free(&mpi_comm); | ||
| MPI_Finalize(); | ||
| #endif | ||
| } | ||
|
|
||
| PRINT("%s\n", ncclGetLastError(NULL)); | ||
|
|
||
|
|
||
Uh oh!
There was an error while loading. Please reload this page.