Skip to content

OCNGill/Radeon_Open_Compute_ROCm_Installer_Windows_x64

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

83 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Radeon_Open_Compute_ROCm_Installer_Windows_x64 (v1.7)

This repository provides a unified environment for deploying and testing AMD ROCm on Windows x64 systems. It consolidates Python-based workflows with Conda environments and a standalone MSI installer build system.

Quick Start - Download the MSI Installer

For most users, download the one-click installer:

ROCm_windows_x64_1.7.msi - One-click installer (coming soon via GitHub Actions)

Note: The MSI will be automatically built and released when you push the v1.7 tag. Check the Actions tab.

Repository structure

  • docs/ — Documentation
  • revision_documentation/ — Archived and deduplicated revision documents
  • python_with_conda_env/ — Python-specific workflows with Conda environment
  • installer/ — MSI installer build system
  • claude_skills_for_AI_workflows/ — Claude skills prompts for AI workflow automation
  • testing/ — Testing environments (VM, Sandbox)

Status as of End of Day (v1.3) - 2025-10-27:

Branches consolidated, documentation cleaned, repo renamed, Claude skills folder added, and Conda environment synchronized.

Tomorrow: Testing begins on Gillsystems_main with Ryzen 5900X + Radeon 7900XTX. VM and Windows Sandbox are already prepared.


Security Notice: Self-Signed Installer

This installer is currently signed with a self-signed certificate for community testing and distribution.

What this means:

  • Windows SmartScreen will display a warning when you run the installer
  • This is EXPECTED and SAFE for self-signed applications
  • The installer is built from open-source code you can inspect

To install:

  1. Download the MSI from Releases
  2. Right-click and select "Run as Administrator"
  3. When SmartScreen appears, click "More info"
  4. Click "Run anyway"
  5. Follow the installation wizard

Why self-signed?

  • Commercial code signing certificates cost $300-500/year
  • This is a community project without corporate funding
  • All source code is available for review on GitHub

Future: We plan to obtain a commercial certificate once the project demonstrates community adoption and funding becomes available.


ROCm Windows Installer

One-Click AMD ROCm Setup for AI & Machine Learning on Windows 10/11

Windows 10/11 ROCm Python License


Project and Work Product Description

This project provides a rock-solid, production-ready automated installer for AMD's ROCm (Radeon Open Compute) platform on Windows 10 Pro and Windows 11 systems using WSL2. It fills a critical gap left by AMD by providing a streamlined, user-friendly solution for AI enthusiasts, data scientists, and machine learning engineers who want to leverage AMD Radeon RX 7000 Series GPUs for their work.

The installer addresses the complex, error-prone manual installation process by providing:

  • Automated hardware detection and compatibility verification
  • One-click WSL2 setup with Ubuntu 22.04
  • Complete ROCm 6.1.3 installation with all dependencies
  • PyTorch 2.1.2 + ROCm integration with proper HSA runtime configuration
  • Professional GUI for monitoring and control with comprehensive logging
  • Validation and testing to ensure everything works before you start coding

Problem Statement: AMD provides excellent GPU hardware but lacks an easy, automated installation path for Windows users wanting to run ROCm-powered AI applications. Manual installation involves dozens of steps across multiple systems (Windows and Linux) with numerous potential failure points.

Solution: This installer automates the entire process from hardware detection through validation, making ROCm accessible to everyone with compatible hardware.


Description of Solution

Core Workflow

The ROCm Windows 11 Installer orchestrates a complete installation workflow:

  1. System Compatibility Check

    • Verifies Windows 10 Pro/Enterprise/Education (Build 19041+) or Windows 11
    • Detects AMD Radeon RX 7000 Series GPU or Ryzen AI APU
    • Checks AMD driver version (25.9.2+)
    • Confirms WSL2 capability and Hyper-V support
    • Validates Windows edition (Pro/Enterprise/Education required)
  2. WSL2 Environment Setup

    • Enables Windows Subsystem for Linux features
    • Installs Ubuntu 22.04 (tested and verified version)
    • Configures WSL2 as default
    • Sets up networking and GPU passthrough
  3. ROCm Installation

    • Downloads AMD GPU install package (6.1.3)
    • Installs AMDGPU drivers for WSL
    • Installs ROCm runtime and toolchain
    • Configures environment variables
  4. PyTorch Integration

    • Installs Python 3.10 and dependencies
    • Downloads PyTorch 2.1.2 + ROCm 6.1.3 wheels
    • Installs TorchVision and TorchAudio
    • Fixes HSA runtime library linking
    • Validates GPU detection
  5. Validation & Testing

    • Runs ROCminfo to verify GPU detection
    • Tests PyTorch CUDA/ROCm availability
    • Creates test tensor on GPU
    • Generates installation report

Minimum Viable Product (MVP) Features

V1.0 Delivered:

  • Complete automated installation pipeline
  • Professional Streamlit web interface
  • Comprehensive PowerShell automation scripts
  • Bash scripts for WSL2-side installation
  • Real-time progress tracking
  • Detailed logging system
  • Error handling and recovery guidance
  • System compatibility checking
  • Installation validation and testing
  • Requirements template for ML packages

Future Enhancements (V2.0+):

  • Automatic rollback on failures
  • Modular component installation
  • Digital signing for distribution
  • Pre-configured ML environment templates
  • Stable Diffusion quick-setup wizard
  • LLM framework installers (LM Studio, Ollama integration)
  • Performance benchmarking tools
  • Troubleshooting diagnostic wizard

Solution Design (High-Level)

Architecture Diagram

## Windows 10/11 Host

## Streamlit Web Interface (Python)
- Progress Tracking
- User Controls
- Log Visualization

## PowerShell Automation Layer
- Hardware Detection
- Driver Verification
- WSL2 Setup
- Master Orchestrator

## WSL2 Bridge

## WSL2 Ubuntu 22.04

### Bash Installation Scripts
- ROCm Installation
- PyTorch Setup

### ROCm Runtime Environment
- /opt/rocm/
- PyTorch 2.1.2 + ROCm
- CUDA/ROCm API Layer

## GPU Passthrough

## AMD Radeon RX 7000 Series GPU
- Hardware Acceleration
- ROCm 6.1.3 Compatible Drivers

### Component Interaction Flow

```mermaid
graph TD
    A[User] --> B[Streamlit GUI]
    B --> C[Hardware Check]
    C --> D[Driver Verification]
    D --> E[WSL2 Setup]
  E --> F[Ubuntu 22.04 Installation]
    F --> G[ROCm Installation]
    G --> H[PyTorch Installation]
    H --> I[Validation Tests]
    I --> J[Ready for AI/ML Development]

Solution Code Description

Project Structure

ROCm_Win11_installer/

---

## ROCm AI Platform — Local LLMs & Docker management

The project now includes an expanded Streamlit UI (`src/gui/streamlit_app.py`) that provides a lightweight "ROCm AI Platform" for managing local AI tooling after ROCm is installed. Key additions:

- A **Docker & Containers** tab to build/manage local images (vLLM server and a PyTorch/JupyterLab developer image).
- A **Models & Chat** tab that displays model configuration (`src/config/llm_config.yaml`) and provides a local chat UI (client) that can connect to a running vLLM service.
- Helper scripts:
   - `src/scripts/prepare_wsl_env.ps1` — prepares the WSL environment and copies installation scripts into `/tmp/ROCm_install` inside `Ubuntu-22.04`.
   - `src/scripts/run_docker_build.ps1` — wrapper used by the GUI to build Docker images from Windows/PowerShell.

How to run the GUI (PowerShell):

```powershell
# (Optional) Activate the project's Python environment
# conda activate ROCm_installer_env

# Launch Streamlit UI
streamlit run src/gui/streamlit_app.py

Manual Docker build example (PowerShell):

cd src\docker\vllm
docker build -t rocm-vllm:latest .

# Or use the provided helper script (example)
.\src\scripts\run_docker_build.ps1 -Path "$(Resolve-Path src\docker\vllm)" -Tag rocm-vllm:latest

Notes:

  • Docker features require Docker Desktop installed and running on Windows.

  • WSL operations assume an Ubuntu distribution named Ubuntu-22.04.

  • The Chat UI is a client; to use it you must run a vLLM server/container or point the config to an existing endpoint.

    gui/ streamlit_app.py # Main web interface? scripts/ detect_hardware.ps1 # Windows hardware detection verify_amd_compatibility.ps1 # AMD GPU/driver check wsl2_setup.ps1 # WSL2 installation master_installer.ps1 # Master orchestrator install_ROCm.sh # ROCm installation (WSL) install_pytorch.sh # PyTorch installation (WSL) utils/ logging_utils.py # Logging utilities logs/ # Installation logs docs/ # Documentation environment.yml # Conda environment requirements.txt# Python dependencies README.md # This file


### Key Components

#### 1. **Streamlit Web Interface** (`src/gui/streamlit_app.py`)
- Modern, responsive UI with progress tracking
- Real-time log streaming
- System information display
- Installation control panel
- Validation testing interface

#### 2. **PowerShell Scripts** (`src/scripts/*.ps1`)
- **detect_hardware.ps1**: Detects AMD GPU and Windows version
- **verify_amd_compatibility.ps1**: Validates driver versions and GPU compatibility
- **wsl2_setup.ps1**: Automates WSL2 installation and configuration
- **master_installer.ps1**: Orchestrates the entire installation process

#### 3. **Bash Scripts** (`src/scripts/*.sh`)
- **install_ROCm.sh**: Installs ROCm 6.1.3 in WSL2 Ubuntu
- **install_pytorch.sh**: Installs PyTorch with ROCm support and fixes HSA runtime

#### 4. **Logging System** (`src/utils/logging_utils.py`)
- Timestamped logs
- Multiple log levels (INFO, WARNING, ERROR, SUCCESS)
- File and console output
- System information capture

---

## Actual Working Product Code

### External Dependencies

#### Python Packages (requirements.txt)

streamlit>=1.30.0 # Web interface framework psutil>=5.9.0 # System and process utilities requests>=2.31.0 # HTTP library PyYAML>=6.0 # YAML parser tqdm>=4.65.0 # Progress bars watchdog>=3.0.0 # File system monitoring streamlit-option-menu>=0.3.6 # UI components


#### Conda Environment (environment.yml)
```yaml
name: ROCm_installer_env
channels:
  - conda-forge
  - defaults
dependencies:
  - python=3.10
  - pip
  - streamlit
  - psutil
  - pywin32
  - pyyaml
  - rich
  - typer
  - requests
  - pytest
  - black
  - flake8

Custom Modules

All custom code is thoroughly documented and includes:

  • Hardware detection algorithms
  • WSL2 automation logic
  • ROCm installation orchestration
  • PyTorch integration with HSA runtime fixes
  • Comprehensive error handling
  • Progress tracking system

Code Links


Application Instructions

Prerequisites

  • Operating System: Windows 10 Pro/Enterprise/Education (Build 19041+) OR Windows 11
  • Hardware: AMD Radeon RX 7000 Series GPU
    • RX 7900 XTX, XT, GRE
    • RX 7800 XT
    • RX 7700 XT
    • RX 7600 XT, 7600
    • Ryzen AI APUs (Radeon 890M, 880M, 780M)
  • RAM: 16GB+ recommended (32GB for large models)
  • Storage: 50GB+ free disk space
  • Network: Internet connection for downloads
  • Privileges: Administrator access required
  • Requirements:
    • Hyper-V capable system (not available on Windows Home editions)
    • Virtualization enabled in BIOS/UEFI
    • AMD Adrenalin drivers 25.9.2 or later

Note: Windows 10 Home and Windows 11 Home editions are NOT supported because they lack Hyper-V functionality required for WSL2.

Installation Steps

Method 1: GUI Installation (Recommended)

  1. Clone the Repository

    git clone https://github.com/OCNGill/ROCm_Installer_Win11.git
    cd ROCm_Installer_Win11
  2. Set Up Python Environment

    # Using Conda (recommended)
    conda env create -f environment.yml
    conda activate ROCm_installer_env
    
    # OR using pip
    pip install -r requirements.txt
  3. Launch the Installer

    streamlit run src/gui/streamlit_app.py
  4. Follow the Web Interface

    • Open your browser (automatically opens to http://localhost:8501)
    • Navigate through the tabs:
      • Home: Overview and requirements
      • Compatibility: Run system checks
  • Installation: Execute installation steps
    • Documentation: Access help resources
  1. Complete Installation
    • Click through each installation step
    • Monitor progress in real-time
    • Review logs for any issues
  • Run validation tests

Method 2: Command-Line Installation

  1. Run as Administrator

    # Open PowerShell as Administrator
    cd ROCm_Installer_Win11\src\scripts
  2. Execute Master Installer

    .\master_installer.ps1
  3. Follow Prompts

    • Confirm each installation step
    • Wait for completion
    • Review final summary

Post-Installation

  1. Verify Installation
    # Open WSL2
    wsl -d Ubuntu-22.04
    

Check ROCm

ROCminfo

Test PyTorch

python3 -c "import torch; print(torch.cuda.is_available())"


2. **Install AI Frameworks** (Optional)
```bash
# Inside WSL2
pip3 install -r ~/ROCm_requirements.txt
  1. Start Development
    • Your system is now ready for AI/ML projects!
    • Compatible with Stable Diffusion, LLMs, and more

Important Guidelines

  • DO NOT overwrite PyTorch when installing other packages
  • ALWAYS comment out torch lines in requirements.txt files
  • KEEP logs for troubleshooting (stored in logs/ directory)
  • UPDATE AMD drivers regularly for best performance
  • BACKUP your work before major system changes

Future Enhancements

Version 2.0 Roadmap

  • Automated Rollback: Undo installation if errors occur
  • Component Selection: Choose which parts to install
  • Profile Manager: Save/load installation profiles
  • Update Checker: Automatically check for ROCm updates

Version 3.0 Roadmap

  • Pre-configured Environments: One-click setups for:
    • Stable Diffusion (ComfyUI, Automatic1111)
    • LLM Development (LM Studio, Ollama)
    • General ML (TensorFlow, JAX)
  • Performance Tuning: Optimize ROCm for specific GPUs
  • Cloud Integration: Backup and sync configurations
  • Community Repository: Share working configurations

Version 4.0+ Vision

  • Multi-GPU Support: Manage multiple AMD GPUs
  • Remote Installation: Set up systems remotely
  • CI/CD Integration: Automate testing and deployment
  • Enterprise Features: Bulk deployment, licensing

Troubleshooting

Common Issues

Issue Solution
WSL2 not installing Enable virtualization in BIOS
GPU not detected Update AMD drivers to 24.6.1+
PyTorch can't find GPU Verify HSA runtime fix applied
Installation hangs Check internet connection, run individually
Permission denied Run PowerShell as Administrator

Getting Help

  1. Check Logs: Review installation logs in logs/ directory
  2. AMD Documentation: ROCm for WSL2
  3. Community Forums: AMD Community
  4. GitHub Issues: Create an issue

Contributing

Contributions are welcome! Please:

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Submit a pull request

License

MIT License - see LICENSE file for details


Acknowledgments

  • AMD for ROCm platform and documentation
  • Microsoft for WSL2 technology
  • Streamlit for the excellent GUI framework
  • Community Contributors for testing and feedback

Contact & Support


💖 Support / Donate

If you find this project helpful, you can support ongoing work — thank you!

PayPal QR code Venmo QR code

Donate:


Gillsystems logo with QR codes and icons

PayPal Venmo