Skip to content

VehicleWorld is the first comprehensive multi-device environment for intelligent vehicle interaction that accurately models the complex, interconnected systems in modern cockpits.

Notifications You must be signed in to change notification settings

OpenMOSS/VehicleWorld

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🚗 VehicleWorld

A Highly Integrated Multi-Device Environment for Intelligent Vehicle Interaction

arXiv EMNLP 2025 Python 3.10+

📖 Paper | 🚀 GitHub


🌟 Overview

VehicleWorld is the first comprehensive multi-device environment for intelligent vehicle interaction that accurately models the complex, interconnected systems in modern cockpits. Our environment enables precise evaluation of agent behaviors by providing real-time state information during execution.

VehicleWorld Environment

🎯 Key Features

  • 🔧 30 Modules - Comprehensive vehicle subsystems
  • 🛠️ 250 APIs - Rich functionality coverage
  • 📊 680 Properties - Detailed state management
  • ⚡ Real-time Execution - Live state feedback
  • 🌐 Environmental Awareness - Real-time world state access

💡 Core Innovations

🧠 State-based Function Call (SFC)

Our analysis revealed that directly predicting environment states proves more effective than predicting function calls in complex, state-dependent systems. This led to our novel State-based Function Call (SFC) approach.

SFC vs FC Performance

🔄 Hybrid FC+SFC Approach

We discovered complementary strengths:

  • SFC: Excels at device selection (global environmental perception)
  • FC: More efficient for complex state transitions (high-level APIs)

Based on these observations, we analyze the integration of two approaches (FC+SFC): leveraging SFC's environment perception capability for device selection, then providing relevant device APIs for FC-based calls.

Hybrid Approach


🔥 News & Updates

Date Update
🎉 2025/08/21 Paper accepted to EMNLP 2025 Findings
🚀 2025/09/09 VehicleWorld dataset and evaluation framework released

🚀 Quick Start

Prerequisites

conda create -n VehicleWorld python=3.10
conda activate VehicleWorld
pip install -r requirements.txt

🛠️ Data Construction

cd vehicleworld/database
python task_construct.py

📁 Generated tasks → vehicleworld/database/tasks


🎮 Evaluation Methods

Our framework supports multi-threaded execution with automatic progress saving every 100 tasks.

1️⃣ Function Call (FC)

cd vehicleworld/evaluation
python fc_evaluation.py \
  --api_base "https://api.openai.com/v1" \
  --api_key "your-api-key" \
  --model "gpt-4o" \
  --max_workers 8 \
  --sample_size 1500 \
  --reflect_num 3 \
  --prefix "fc_test" \
  --sample

2️⃣ State-based Function Call (SFC)

cd vehicleworld/evaluation
python sfc_evaluation.py \
  --api_base "https://api.openai.com/v1" \
  --api_key "your-api-key" \
  --model "gpt-4o" \
  --max_workers 8 \
  --sample_size 1500 \
  --reflect_num 0 \
  --prefix "sfc_test" \
  --sample

3️⃣ FC+SFC

cd vehicleworld/evaluation
python fc_sfc_evaluation.py \
  --api_base "https://api.openai.com/v1" \
  --api_key "your-api-key" \
  --model "gpt-4o" \
  --max_workers 8 \
  --sample_size 1500 \
  --reflect_num 1 \
  --prefix "hybrid_test" \
  --sample

⚙️ Configuration Parameters

Parameter Type Default Required Description
--api_base str - API endpoint URL
--api_key str - Authentication key
--model str - Model identifier
--max_workers int 4 Parallel threads
--sample_size int 50 Evaluation samples
--reflect_num int 0 Reflection iterations
--sample flag False Enable sampling mode
--plan flag False Enable planning mode
--prefix str "" Output file prefix

📂 Results: vehicleworld/evaluation/outputs/


🖥️ Open-Source Model Deployment

We deploy all open-source models using vLLM with a consistent sampling temperature of 0.7 for fair evaluation.

Special Configurations:

  • Qwen2.5: Extended to 128k context length using YaRN
  • Qwen3: Extended context with YaRN, thinking mode disabled

This setup ensures consistent and efficient evaluation across all model types.


📚 Citation

If you find VehicleWorld useful for your research, please cite:

@misc{yang2025vehicleworldhighlyintegratedmultidevice,
    title={VehicleWorld: A Highly Integrated Multi-Device Environment for Intelligent Vehicle Interaction}, 
    author={Jie Yang and Jiajun Chen and Zhangyue Yin and Shuo Chen and Yuxin Wang and Yiran Guo and Yuan Li and Yining Zheng and Xuanjing Huang and Xipeng Qiu},
    year={2025},
    eprint={2509.06736},
    archivePrefix={arXiv},
    primaryClass={cs.AI},
    url={https://arxiv.org/abs/2509.06736}
}

🌟 Star us on GitHub if you find this project useful! 🌟

[GitHub stars](https://github.com/OpenMOSS/VehicleWorld)

About

VehicleWorld is the first comprehensive multi-device environment for intelligent vehicle interaction that accurately models the complex, interconnected systems in modern cockpits.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages