@@ -418,67 +418,57 @@ Usage:
418418 pdl> p "$_\t@{[$m{$_} =~ /^\n*(.*?)\n*\z/s]}\n" for sort keys %m
419419
420420 # 2 persons' ratings, each fitted with 3 "different" models
421-
422- F
423- [
421+ F [
424422 [ 38.314159 25.087209]
425423 [ 38.314159 25.087209]
426424 [ 38.314159 25.087209]
427425 ]
428426
429427 # df is the same across dv and iv models
430-
431428 F_df [2 7]
432- F_p
433- [
429+ F_p [
434430 [0.00016967051 0.00064215074]
435431 [0.00016967051 0.00064215074]
436432 [0.00016967051 0.00064215074]
437433 ]
438434
439- R2
440- [
435+ R2 [
441436 [ 0.9162963 0.87756762]
442437 [ 0.9162963 0.87756762]
443438 [ 0.9162963 0.87756762]
444439 ]
445440
446- b
447- [ # linear quadratic constant
441+ b [ # constant linear quadratic
448442 [
449- [ 0.99015152 -0.056818182 0.66363636] # person 1
450- [ 0.18939394 0.022727273 1.4] # person 2
443+ [ 0.66363636 0.99015152 -0.056818182] # person 1
444+ [ 1.4 0.18939394 0.022727273] # person 2
451445 ]
452446 [
453- [ 0.49507576 -0.028409091 0.66363636 ]
454- [ 0.09469697 0.011363636 1.4 ]
447+ [ 0.66363636 0.49507576 -0.028409091 ]
448+ [ 1.4 0.09469697 0.011363636 ]
455449 ]
456450 [
457- [ 0.33005051 -0.018939394 0.66363636 ]
458- [ 0.063131313 0.0075757576 1.4 ]
451+ [ 0.66363636 0.33005051 -0.018939394 ]
452+ [ 1.4 0.063131313 0.0075757576 ]
459453 ]
460454 ]
461455
462456 # our novice modeler realizes at this point that
463457 # the 3 models only differ in the scaling of the IV coefficients
464-
465- ss_model
466- [
458+ ss_model [
467459 [ 20.616667 13.075758]
468460 [ 20.616667 13.075758]
469461 [ 20.616667 13.075758]
470462 ]
471463
472- ss_residual
473- [
464+ ss_residual [
474465 [ 1.8833333 1.8242424]
475466 [ 1.8833333 1.8242424]
476467 [ 1.8833333 1.8242424]
477468 ]
478469
479- ss_total [22.5 14.9]
480- y_pred
481- [
470+ ss_total [22.5 14.9]
471+ y_pred [
482472 [
483473 [0.66363636 1.5969697 2.4166667 3.1227273 ... 4.9727273]
484474 ...
@@ -1446,8 +1436,7 @@ Usage:
14461436 # suppose this is a person's ratings for top 10 box office movies
14471437 # ascending sorted by box office
14481438
1449- pdl> p $y = qsort ceil( random(10) * 5 )
1450- [1 1 2 2 2 2 4 4 5 5]
1439+ pdl> $y = pdl '[1 1 2 2 2 2 4 4 5 5]'
14511440
14521441 # construct IV with linear and quadratic component
14531442
@@ -1459,19 +1448,18 @@ Usage:
14591448
14601449 pdl> %m = $y->ols( $x )
14611450
1462- pdl> p "$_\t$m{$_}\n" for sort keys %m
1451+ pdl> p "$_\t@{[ $m{$_} =~ /^\n*(.*?)\n*\z/s] }\n" for sort keys %m
14631452
14641453 F 40.4225352112676
14651454 F_df [2 7]
14661455 F_p 0.000142834216344756
14671456 R2 0.920314253647587
14681457
1469- # coeff linear quadratic constant
1470-
1471- b [0.21212121 0.03030303 0.98181818]
1472- b_p [0.32800118 0.20303404 0.039910509]
1473- b_se [0.20174693 0.021579989 0.38987581]
1474- b_t [ 1.0514223 1.404219 2.5182844]
1458+ # coeff constant linear quadratic
1459+ b [0.981818 0.212121 0.030303]
1460+ b_p [0.039910 0.328001 0.203034]
1461+ b_se [0.389875 0.201746 0.021579]
1462+ b_t [2.518284 1.051422 1.404218]
14751463 ss_model 19.8787878787879
14761464 ss_residual 1.72121212121212
14771465 ss_total 21.6
0 commit comments