Skip to content

[API Compatibility] Add pp.Tensor.mul_, pp.autograd.Function, pp.argwhere #74493

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Aug 12, 2025
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions python/paddle/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -573,6 +573,7 @@
argmax,
argmin,
argsort,
argwhere,
bucketize,
index_sample,
index_select,
Expand Down Expand Up @@ -1121,6 +1122,7 @@
'atleast_3d',
'reverse',
'nonzero',
'argwhere',
'CUDAPinnedPlace',
'XPUPinnedPlace',
'logical_not',
Expand Down
3 changes: 3 additions & 0 deletions python/paddle/autograd/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,11 +28,14 @@
from .py_layer import PyLayer, PyLayerContext
from .saved_tensors_hooks import saved_tensors_hooks

Function = PyLayer

__all__ = [
'jacobian',
'hessian',
'backward',
'PyLayer',
'Function',
'PyLayerContext',
'saved_tensors_hooks',
]
6 changes: 6 additions & 0 deletions python/paddle/tensor/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -365,6 +365,8 @@
mm,
mod,
mod_,
mul,
mul_,
multigammaln,
multigammaln_,
multiplex,
Expand Down Expand Up @@ -453,6 +455,7 @@
argmax,
argmin,
argsort,
argwhere,
bucketize,
index_sample,
index_select,
Expand Down Expand Up @@ -607,6 +610,8 @@
'floor_mod_',
'multiply',
'multiply_',
'mul',
'mul_',
'add',
'add_',
'subtract',
Expand Down Expand Up @@ -877,6 +882,7 @@
'log_normal_',
'set_',
'resize_',
'argwhere',
]

# this list used in math_op_patch.py for magic_method bind
Expand Down
78 changes: 77 additions & 1 deletion python/paddle/tensor/math.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,7 @@
from collections.abc import Sequence

from paddle import Tensor
from paddle._typing import DTypeLike
from paddle._typing import DTypeLike, Numeric

__all__ = []

Expand Down Expand Up @@ -1164,6 +1164,67 @@ def multiply(x: Tensor, y: Tensor, name: str | None = None) -> Tensor:
return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


def mul(x: Tensor, other: Numeric) -> Tensor:
"""
Multiplies the input tensor ``x`` with ``other`` element-wise.

The equation is:

.. math::
out = x * other

Note:
Tensor.mul supports broadcasting. If you would like to know more about broadcasting, please refer to `Introduction to Tensor`_ .

.. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

Args:
x (Tensor): The first input tensor, its data type should be one of bfloat16, float16, float32, float64, int32, int64, bool, complex64, complex128.
other (Tensor|float|int|bool|complex): The second input, which can be a Tensor, float, int, bool or complex. If ``other`` is a Tensor, its data type should be one of bfloat16, float16, float32, float64, int32, int64, bool, complex64, complex128.

Returns:
N-D Tensor. A location into which the result is stored. If ``x``, ``other`` have different shapes and are "broadcastable", the resulting tensor shape is the shape of ``x`` and ``other`` after broadcasting. If ``x``, ``other`` have the same shape, its shape is the same as ``x`` and ``other``.

Examples:
.. code-block:: python

>>> import paddle

>>> # Multiply a tensor by a scalar
>>> x = paddle.to_tensor([1, 2, 3])
>>> res = paddle.mul(x, 2.0)
>>> print(res)
Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
[2., 4., 6.])

>>> # Multiply a tensor by another tensor
>>> x = paddle.to_tensor([[1, 2], [3, 4]])
>>> y = paddle.to_tensor([[5, 6], [7, 8]])
>>> res = paddle.mul(x, y)
>>> # also equivalent to `res = x * y`
>>> print(res)
Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
[[5 , 12],
[21, 32]])

>>> # Broadcasting example
>>> x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
>>> y = paddle.to_tensor([2])
>>> res = paddle.mul(x, y)
>>> print(res)
Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
[[[2, 4, 6],
[2, 4, 6]]])

"""
other_tensor = (
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个后面会统一开展,即二元函数支持scalar。

目前就写别名就可以

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done

other
if isinstance(other, paddle.Tensor)
else paddle.to_tensor(other, place=x.place)
)
return multiply(x, other_tensor)


@inplace_apis_in_dygraph_only
def multiply_(x: Tensor, y: Tensor, name: str | None = None) -> Tensor:
"""
Expand All @@ -1180,6 +1241,21 @@ def multiply_(x: Tensor, y: Tensor, name: str | None = None) -> Tensor:
return _C_ops.multiply_(x, y)


@inplace_apis_in_dygraph_only
def mul_(x: Tensor, other: Numeric) -> Tensor:
"""
Inplace version of ``mul`` API, the output Tensor will be inplaced with input ``x``.
Please refer to :ref:`api_paddle_mul`.
"""

other_tensor = (
other
if isinstance(other, paddle.Tensor)
else paddle.to_tensor(other, place=x.place)
)
return multiply_(x, other_tensor)


def _elementwise_op_with_axis(x, y, axis=-1, name=None, op_type="Undefined"):
assert (
in_dynamic_or_pir_mode()
Expand Down
32 changes: 32 additions & 0 deletions python/paddle/tensor/search.py
Original file line number Diff line number Diff line change
Expand Up @@ -561,6 +561,38 @@ def nonzero(x: Tensor, as_tuple=False):
return tuple(list_out)


def argwhere(input: Tensor) -> Tensor:
"""
Return a tensor containing the indices of all non-zero elements of the `input`
tensor. The returned tensor has shape [z, n], where `z` is the number of all non-zero
elements in the `input` tensor, and `n` is the number of dimensions in the `input`
tensor.

Args:
input (Tensor): The input tensor variable.

Returns:
Tensor, The data type is int64.

Examples:

.. code-block:: python

>>> import paddle

>>> x = paddle.to_tensor([[1.0, 0.0, 0.0],
... [0.0, 2.0, 0.0],
... [0.0, 0.0, 3.0]])
>>> out = paddle.tensor.search.argwhere(x)
>>> print(out)
Tensor(shape=[3, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
[[0, 0],
[1, 1],
[2, 2]])
"""
return nonzero(input, as_tuple=False)


def _restrict_nonzero(condition: Tensor, total_true_num: int) -> Tensor:
"""
Return a tensor containing the indices of all non-zero elements of the `input`
Expand Down
187 changes: 187 additions & 0 deletions test/legacy_test/test_argwhere_api.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,187 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
from op_test import OpTest, convert_float_to_uint16

import paddle
from paddle import base
from paddle.base import Program, program_guard


def call_argwhere(x):
input = paddle.to_tensor(x)
return paddle.argwhere(input)


class TestArgwhereAPI(unittest.TestCase):
def test_argwhere_api(self):
paddle.enable_static()
data = np.array([[1, 0], [0, 1]], dtype="float32")
with program_guard(Program(), Program()):
x = paddle.static.data(name='x', shape=[-1, 2], dtype='float32')
if not paddle.framework.use_pir_api():
x.desc.set_need_check_feed(False)
y = paddle.argwhere(x)
exe = base.Executor(base.CPUPlace())
(res,) = exe.run(
feed={'x': data}, fetch_list=[y], return_numpy=False
)
expect_out = np.array([[0, 0], [1, 1]])
np.testing.assert_allclose(expect_out, np.array(res), rtol=1e-05)

data = np.array([1, 1, 0], dtype="float32")
with program_guard(Program(), Program()):
x = paddle.static.data(name='x', shape=[-1], dtype='float32')
if not paddle.framework.use_pir_api():
x.desc.set_need_check_feed(False)
y = paddle.argwhere(x)
exe = base.Executor(base.CPUPlace())
(res,) = exe.run(
feed={'x': data}, fetch_list=[y], return_numpy=False
)
expect_out = np.array([[0], [1]])
np.testing.assert_allclose(expect_out, np.array(res), rtol=1e-05)

def test_dygraph_api(self):
data_x = np.array([[True, False], [False, True]])
with base.dygraph.guard():
x = paddle.to_tensor(data_x)
z = paddle.argwhere(x)
np_z = z.numpy()
expect_out = np.array([[0, 0], [1, 1]])


# Base case
class TestArgwhereOp(OpTest):
def setUp(self):
'''Test where_index op with random value'''
np.random.seed(2023)
self.op_type = "where_index"
self.python_api = call_argwhere
self.init_shape()
self.init_dtype()

self.inputs = self.create_inputs()
self.outputs = self.return_outputs()

def test_check_output(self):
self.check_output(check_pir=True, check_symbol_infer=False)

def init_shape(self):
self.shape = [8, 8]

def init_dtype(self):
self.dtype = np.float64

def create_inputs(self):
return {
'Condition': np.random.randint(5, size=self.shape).astype(
self.dtype
)
}

def return_outputs(self):
return {'Out': np.argwhere(self.inputs['Condition'])}


class TestArgwhereComplex64Op(TestArgwhereOp):
def init_shape(self):
self.shape = [1, 2, 3]

def init_dtype(self):
self.dtype = np.complex64


class TestArgwhereComplex128Op(TestArgwhereOp):
def init_shape(self):
self.shape = [1, 2, 3]

def init_dtype(self):
self.dtype = np.complex128


class TestArgwhereFP32Op(TestArgwhereOp):
def init_shape(self):
self.shape = [2, 10, 2]

def init_dtype(self):
self.dtype = np.float32


class TestArgwhereFP16Op(TestArgwhereOp):
def init_shape(self):
self.shape = [3, 4, 7]

def init_dtype(self):
self.dtype = np.float16


class TestArgwhereBF16(OpTest):
def setUp(self):
'''Test where_index op with bfloat16 dtype'''
np.random.seed(2023)
self.op_type = "where_index"
self.python_api = call_argwhere
self.init_shape()
self.init_dtype()

self.inputs = self.create_inputs()
self.outputs = self.return_outputs()

def test_check_output(self):
self.check_output(check_pir=True, check_symbol_infer=False)

def init_shape(self):
self.shape = [12, 9]

def init_dtype(self):
self.dtype = np.uint16

def create_inputs(self):
return {
'Condition': convert_float_to_uint16(
np.random.randint(5, size=self.shape).astype(np.float32)
)
}

def return_outputs(self):
return {'Out': np.argwhere(self.inputs['Condition'])}


class TestZeroSizeOp(TestArgwhereOp):

def init_shape(self):
self.shape = [0, 10]

def init_dtype(self):
self.dtype = np.float64


class TestZeroSizeOpCase2(TestArgwhereOp):

def init_shape(self):
self.shape = [0, 10]

def init_dtype(self):
self.dtype = np.float64

def test_check_output(self):
self.check_output(check_pir=True, check_symbol_infer=True)


if __name__ == "__main__":
unittest.main()
Loading
Loading