Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .travis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ before_install:
fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then sudo paddle/scripts/travis/before_install.linux.sh; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then paddle/scripts/travis/before_install.osx.sh; fi
- pip install wheel protobuf sphinx breathe recommonmark virtualenv numpy
- pip install wheel protobuf 'sphinx==1.4.9' breathe recommonmark virtualenv numpy
script:
- paddle/scripts/travis/main.sh
notifications:
Expand Down
8 changes: 4 additions & 4 deletions doc/ui/data_provider/pydataprovider2.rst
Original file line number Diff line number Diff line change
Expand Up @@ -174,12 +174,12 @@ input_types
+++++++++++

PaddlePaddle has four data types, and three sequence types.
The four data types are:
The four data types are:

* :code:`dense_vector`: dense float vector.
* :code:`sparse_binary_vector`: sparse binary vector, most of the value is 0, and
the non zero elements are fixed to 1.
* :code:`sparse_float_vector`: sparse float vector, most of the value is 0, and some
* :code:`sparse_vector`: sparse float vector, most of the value is 0, and some
non zero elements can be any float value. They are given by the user.
* :code:`integer`: an integer scalar, that is especially used for label or word index.

Expand All @@ -200,7 +200,7 @@ in the above table.
+----------------------+---------------------+-----------------------------------+------------------------------------------------+
| sparse_binary_vector | [i, i, ...] | [[i, ...], [i, ...], ...] | [[[i, ...], ...], [[i, ...], ...],...] |
+----------------------+---------------------+-----------------------------------+------------------------------------------------+
| sparse_float_vector | [(i,f), (i,f), ...] | [[(i,f), ...], [(i,f), ...], ...] | [[[(i,f), ...], ...], [[(i,f), ...], ...],...] |
| sparse_vector | [(i,f), (i,f), ...] | [[(i,f), ...], [(i,f), ...], ...] | [[[(i,f), ...], ...], [[(i,f), ...], ...],...] |
+----------------------+---------------------+-----------------------------------+------------------------------------------------+
| integer_value | i | [i, i, ...] | [[i, ...], [i, ...], ...] |
+----------------------+---------------------+-----------------------------------+------------------------------------------------+
Expand All @@ -227,7 +227,7 @@ Its parameters lists as follows:
* :code:`is_train` is a bool parameter that indicates the DataProvider is used in
training or testing.
* :code:`file_list` is the list of all files.

* User-defined parameters args can be set in training configuration.

Note, PaddlePaddle reserves the right to add pre-defined parameter, so please
Expand Down
2 changes: 1 addition & 1 deletion doc/ui/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@

## API Reference

* [Model Config Interface](api/trainer_config_helpers/index.md)
* [Model Config Interface](api/trainer_config_helpers/index.rst)

## Command Line Argument

Expand Down
8 changes: 4 additions & 4 deletions doc_cn/ui/data_provider/pydataprovider2.rst
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ process函数调用多次 :code:`yield` 即可。 :code:`yield` 是Python的一

.. literalinclude:: mnist_config.py

这里说明了训练数据是 'train.list',而没有测试数据。引用的DataProvider是 'mnist_provider'
这里说明了训练数据是 'train.list',而没有测试数据。引用的DataProvider是 'mnist_provider'
这个模块中的 'process' 函数。

同时,根据模型配置文件中 :code:`data_layer` 的名字,用户也可以显式指定返回的数据对应关系。例如:
Expand Down Expand Up @@ -152,7 +152,7 @@ PaddlePaddle的数据包括四种主要类型,和三种序列模式。其中

* dense_vector 表示稠密的浮点数向量。
* sparse_binary_vector 表示稀疏的零一向量,即大部分值为0,有值的位置只能取1
* sparse_float_vector 表示稀疏的向量,即大部分值为0,有值的部分可以是任何浮点数
* sparse_vector 表示稀疏的向量,即大部分值为0,有值的部分可以是任何浮点数
* integer 表示整数标签。

而三种序列模式为
Expand All @@ -170,7 +170,7 @@ PaddlePaddle的数据包括四种主要类型,和三种序列模式。其中
+----------------------+---------------------+-----------------------------------+------------------------------------------------+
| sparse_binary_vector | [i, i, ...] | [[i, ...], [i, ...], ...] | [[[i, ...], ...], [[i, ...], ...],...] |
+----------------------+---------------------+-----------------------------------+------------------------------------------------+
| sparse_float_vector | [(i,f), (i,f), ...] | [[(i,f), ...], [(i,f), ...], ...] | [[[(i,f), ...], ...], [[(i,f), ...], ...],...] |
| sparse_vector | [(i,f), (i,f), ...] | [[(i,f), ...], [(i,f), ...], ...] | [[[(i,f), ...], ...], [[(i,f), ...], ...],...] |
+----------------------+---------------------+-----------------------------------+------------------------------------------------+
| integer_value | i | [i, i, ...] | [[i, ...], [i, ...], ...] |
+----------------------+---------------------+-----------------------------------+------------------------------------------------+
Expand Down Expand Up @@ -202,7 +202,7 @@ DataProvider提供了两种简单的Cache策略。他们是

* CacheType.NO_CACHE 不缓存任何数据,每次都会从python端读取数据
* CacheType.CACHE_PASS_IN_MEM 第一个pass会从python端读取数据,剩下的pass会直接从内存里
读取数据。
读取数据。


注意事项
Expand Down