Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 15 additions & 7 deletions ppdiffusers/ppdiffusers/models/attention_processor.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
from paddle import einsum, nn

from ..utils import USE_PEFT_BACKEND, deprecate, logging
from ..utils.import_utils import is_ppxformers_available
from ..utils.import_utils import is_npu_available, is_ppxformers_available
from ..utils.paddle_utils import maybe_allow_in_graph
from .lora import LoRACompatibleLinear, LoRALinearLayer

Expand Down Expand Up @@ -111,7 +111,7 @@ def __init__(
super().__init__()

# To prevent circular import.
from .normalization import RMSNorm, FP32LayerNorm, LpNorm
from .normalization import FP32LayerNorm, LpNorm, RMSNorm

self.inner_dim = dim_head * heads
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
Expand Down Expand Up @@ -251,7 +251,7 @@ def __init__(
# We use the AttnProcessor2_5 by default when paddle 2.5 is used which uses
# paddle.nn.functional.scaled_dot_product_attention_ for native Flash/memory_efficient_attention
if processor is None:
processor = AttnProcessor2_5() if is_ppxformers_available() else AttnProcessor()
processor = AttnProcessor2_5() if is_ppxformers_available() or is_npu_available() else AttnProcessor()
self.set_processor(processor)

@property
Expand Down Expand Up @@ -997,12 +997,20 @@ def __call__(
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)

encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.reshape([batch_size, -1, attn.heads, head_dim])
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.reshape([batch_size, -1, attn.heads, head_dim])
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.reshape([batch_size, -1, attn.heads, head_dim])
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.reshape(
[batch_size, -1, attn.heads, head_dim]
)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.reshape(
[batch_size, -1, attn.heads, head_dim]
)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.reshape(
[batch_size, -1, attn.heads, head_dim]
)

if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj, begin_norm_axis=3)
encoder_hidden_states_query_proj = attn.norm_added_q(
encoder_hidden_states_query_proj, begin_norm_axis=3
)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj, begin_norm_axis=3)

Expand Down
42 changes: 25 additions & 17 deletions ppdiffusers/ppdiffusers/patches/paddle_patch.py
Original file line number Diff line number Diff line change
Expand Up @@ -351,41 +351,48 @@ def to(self=None, device=None, dtype=None, blocking=None):

nn.Layer.to = to

from ..utils.import_utils import is_ppxformers_available, is_npu_available
from ..utils.import_utils import is_npu_available, is_ppxformers_available

if is_npu_available():
for lib in os.listdir(os.getenv("CUSTOM_DEVICE_ROOT")):
if lib.endswith(".so"):
paddle.utils.cpp_extension.extension_utils.load_op_meta_info_and_register_op(
lib
)
paddle.utils.cpp_extension.extension_utils.load_op_meta_info_and_register_op(lib)
from paddle.base import core
def scaled_dot_product_attention_npu(query,
key,
value,
attn_mask=None,
dropout_p=0.0,
is_causal=False,
training=True,
name=None,
fixed_seed_offset=None,
return_softmax=False,
is_triangle_upper_mask=True,
):

def scaled_dot_product_attention_npu(
query,
key,
value,
attn_mask=None,
actual_seq_q_len=None,
actual_seq_kv_len=None,
dropout_p=0.0,
is_causal=False,
training=True,
name=None,
fixed_seed_offset=None,
return_softmax=False,
is_triangle_upper_mask=True,
is_varlen=False,
):
out = core.eager._run_custom_op(
"flash_attention_npu",
query,
key,
value,
fixed_seed_offset,
attn_mask,
actual_seq_q_len,
actual_seq_kv_len,
dropout_p,
is_causal,
return_softmax,
not training,
is_triangle_upper_mask,
is_varlen,
)[0]
return out

paddle.nn.functional.scaled_dot_product_attention_npu = scaled_dot_product_attention_npu

if is_ppxformers_available() or is_npu_available():
Expand All @@ -407,8 +414,9 @@ def scaled_dot_product_attention_npu(query,
paddle.ones((1, 1, 2, 40), dtype=paddle.float16),
attn_mask=paddle.ones((1, 2, 1, 1), dtype=paddle.float16),
)

from paddle.nn.functional.flash_attention import flash_attention

_ = flash_attention(
paddle.ones((1, 1, 2, 40), dtype=paddle.float16),
paddle.ones((1, 1, 2, 40), dtype=paddle.float16),
Expand Down