-
Notifications
You must be signed in to change notification settings - Fork 3.1k
Add Prefix-tuning for few_shot #5539
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Closed
Changes from 3 commits
Commits
Show all changes
7 commits
Select commit
Hold shift + click to select a range
f55c569
prefix-tuning
tsinghua-zhang bafeec1
modefied
tsinghua-zhang 7fe8b40
modefied_generate
tsinghua-zhang aaae88f
modefied
tsinghua-zhang a8a7011
modefied_for_test
tsinghua-zhang 3517bc4
Merge branch 'develop' of https://github.com/PaddlePaddle/PaddleNLP i…
tsinghua-zhang 0531d8b
Merge branch 'develop' of https://github.com/PaddlePaddle/PaddleNLP i…
tsinghua-zhang File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,145 @@ | ||
| # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|
|
||
| from dataclasses import dataclass, field | ||
| from functools import partial | ||
| from typing import Optional | ||
|
|
||
| import paddle | ||
| from utils import PromptTrainerForGeneration, compute_metrics | ||
|
|
||
| from paddlenlp.datasets import load_dataset | ||
| from paddlenlp.prompt import ( | ||
| PrefixTemplate, | ||
| PromptModelForGeneration, | ||
| PromptTuningArguments, | ||
| ) | ||
| from paddlenlp.trainer import PdArgumentParser | ||
| from paddlenlp.transformers import AutoTokenizer, GPTLMHeadModel | ||
| from paddlenlp.utils.log import logger | ||
|
|
||
|
|
||
| @dataclass | ||
| class DataArguments: | ||
| prompt: str = field( | ||
| default="{'prefix':'None'}{'text':'text'}{'sep'}{'text':'labels', 'token_type': 1}", | ||
| metadata={"help": "Add prompt.'prefix'、'text' variable and 'text':'labels' immutable."}, | ||
| ) | ||
| task_name: str = field(default="dureader_qg", metadata={"help": "The name of task."}) | ||
|
|
||
|
|
||
| @dataclass | ||
| class ModelArguments: | ||
| model_name_or_path: str = field( | ||
| default="gpt-cpm-small-cn-distill", | ||
| metadata={"help": "Build-in pretrained model name or the path to local model."}, | ||
| ) | ||
| export_type: str = field(default="paddle", metadata={"help": "The type to export. Support `paddle` and `onnx`."}) | ||
| dropout: float = field(default=0.1, metadata={"help": "The dropout used for pretrained model."}) | ||
| predict_with_generate: Optional[bool] = field( | ||
| default=True, | ||
| metadata={"help": ("Whether to generate in predcit.")}, | ||
| ) | ||
| num_beams: Optional[int] = field( | ||
| default=2, | ||
| metadata={"help": ("The number of beams to use in beam search.")}, | ||
| ) | ||
| max_target_length: Optional[int] = field( | ||
| default=16, | ||
| metadata={ | ||
| "help": ( | ||
| "The maximum total sequence length for target text after " | ||
| "tokenization. Sequences longer than this will be truncated, sequences shorter will be padded." | ||
| "during ``evaluate`` and ``predict``." | ||
| ) | ||
| }, | ||
| ) | ||
|
|
||
|
|
||
| def main(): | ||
| # Parse the arguments. | ||
| parser = PdArgumentParser((ModelArguments, DataArguments, PromptTuningArguments)) | ||
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | ||
|
|
||
| training_args.generation_max_length = model_args.max_target_length | ||
| training_args.predict_with_generate = model_args.predict_with_generate | ||
| training_args.generation_num_beams = model_args.num_beams | ||
|
|
||
| training_args.print_config(model_args, "Model") | ||
| training_args.print_config(data_args, "Data") | ||
| paddle.set_device(training_args.device) | ||
|
|
||
| # Load the pretrained language model. | ||
| tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path) | ||
| tokenizer.pad_token = "<pad>" | ||
| tokenizer.sep_token = "<sep>" | ||
| tokenizer.add_tokens("[Space]", special_tokens=True) | ||
| model = GPTLMHeadModel.from_pretrained( | ||
| model_args.model_name_or_path, | ||
| hidden_dropout_prob=model_args.dropout, | ||
| attention_probs_dropout_prob=model_args.dropout, | ||
| ) | ||
|
|
||
| # Define template for preprocess. | ||
| template = PrefixTemplate(data_args.prompt, tokenizer, training_args.max_seq_length, model) | ||
| logger.info("Using template: {}".format(template.prompt)) | ||
|
|
||
| # Load datasets. | ||
| train_ds, dev_ds = load_dataset(data_args.task_name, splits=["train", "dev"]) | ||
|
|
||
| def convert_label_keyword(input_dict): | ||
| if "text" not in input_dict: | ||
| input_dict["text"] = input_dict.pop("title") + tokenizer.sep_token + input_dict.pop("source") | ||
| if "labels" not in input_dict: | ||
| input_dict["labels"] = input_dict.pop("target") | ||
| return input_dict | ||
|
|
||
| train_ds.map(convert_label_keyword) | ||
| dev_ds.map(convert_label_keyword) | ||
|
|
||
| # Initialize the prompt model with the above variables. | ||
| prompt_model = PromptModelForGeneration( | ||
| model, | ||
| template, | ||
| freeze_plm=training_args.freeze_plm, | ||
| freeze_dropout=training_args.freeze_dropout, | ||
| ) | ||
|
|
||
| dev_compute_metrics = partial(compute_metrics, tokenizer=tokenizer) | ||
| trainer = PromptTrainerForGeneration( | ||
| model=prompt_model, | ||
| tokenizer=tokenizer, | ||
| args=training_args, | ||
| train_dataset=train_ds, | ||
| eval_dataset=dev_ds, | ||
| callbacks=None, | ||
| compute_metrics=dev_compute_metrics, | ||
| ) | ||
|
|
||
| # Traininig. | ||
| if training_args.do_train: | ||
| train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) | ||
| metrics = train_result.metrics | ||
| trainer.save_model() | ||
| trainer.log_metrics("train", metrics) | ||
| trainer.save_metrics("train", metrics) | ||
| trainer.save_state() | ||
|
|
||
| if training_args.do_eval: | ||
| eval_metrics = trainer.evaluate() | ||
| trainer.log_metrics("eval", eval_metrics) | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| main() | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,241 @@ | ||
| # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|
|
||
| import numpy as np | ||
| import paddle | ||
| from rouge import Rouge | ||
|
|
||
| from paddlenlp.metrics import BLEU | ||
| from paddlenlp.prompt import PromptTrainer | ||
|
|
||
|
|
||
| # Define the metric function. | ||
| def compute_metrics(eval_preds, tokenizer): | ||
|
|
||
| all_preds = [] | ||
| all_labels = [] | ||
| labels = eval_preds.label_ids | ||
| preds = eval_preds.predictions | ||
| all_preds.extend(tokenizer.convert_ids_to_string(pred.tolist()) for pred in preds) | ||
| labels = np.where(labels != -100, labels, tokenizer.pad_token_id) | ||
| all_labels.extend(tokenizer.convert_ids_to_string(label.tolist()) for label in labels) | ||
|
|
||
| assert len(all_preds) == len(all_labels), ( | ||
| "The length of pred_responses should be equal to the length of " | ||
| "target_responses. But received {} and {}.".format(len(all_preds), len(all_labels)) | ||
| ) | ||
| rouge = Rouge() | ||
| bleu4 = BLEU(n_size=4) | ||
| scores = [] | ||
| for pred, target in zip(all_preds, all_labels): | ||
| try: | ||
| score = rouge.get_scores(" ".join(pred), " ".join(target)) | ||
| scores.append([score[0]["rouge-1"]["f"], score[0]["rouge-2"]["f"], score[0]["rouge-l"]["f"]]) | ||
| except ValueError: | ||
| scores.append([0, 0, 0]) | ||
| bleu4.add_inst(pred, [target]) | ||
| rouge1 = np.mean([i[0] for i in scores]) | ||
| rouge2 = np.mean([i[1] for i in scores]) | ||
| rougel = np.mean([i[2] for i in scores]) | ||
| print("\n" + "*" * 15) | ||
| print("The auto evaluation result is:") | ||
| print("rouge-1:", round(rouge1, 4)) | ||
| print("rouge-2:", round(rouge2, 4)) | ||
| print("rouge-L:", round(rougel, 4)) | ||
| print("BLEU-4:", round(bleu4.score(), 4)) | ||
| return {"rougel": rougel} | ||
|
|
||
|
|
||
| class PromptTrainerForGeneration(PromptTrainer): | ||
| def __init__( | ||
| self, | ||
| model, | ||
| tokenizer, | ||
| criterion=None, | ||
| args=None, | ||
| data_collator=None, | ||
| train_dataset=None, | ||
| eval_dataset=None, | ||
| compute_metrics=None, | ||
| callbacks=None, | ||
| optimizers=(None, None), | ||
| ): | ||
| super(PromptTrainerForGeneration, self).__init__( | ||
| model=model, | ||
| criterion=criterion, | ||
| args=args, | ||
| data_collator=data_collator, | ||
| train_dataset=train_dataset, | ||
| eval_dataset=eval_dataset, | ||
| tokenizer=tokenizer, | ||
| compute_metrics=compute_metrics, | ||
| callbacks=callbacks, | ||
| optimizers=optimizers, | ||
| ) | ||
| self.verbalizer = None | ||
|
|
||
| def compute_loss(self, model, inputs, return_outputs=False): | ||
tsinghua-zhang marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
| """ | ||
| How the loss is computed by Trainer. By default, all models return the loss in the first element. | ||
|
|
||
| Subclass and override for custom behavior. | ||
| """ | ||
| outputs = model(**inputs) | ||
|
|
||
| # Save past state if it exists | ||
| if self.args.past_index >= 0: | ||
| self._past = outputs[self.args.past_index] | ||
|
|
||
| # print(outputs[0]) | ||
| # We don't use .loss here since the model may return tuples instead of ModelOutput. | ||
| # print(outputs[0], outputs.loss) | ||
| # URGENT | ||
| # print('compute_loss', outputs[0]) | ||
| loss = outputs[0] | ||
|
|
||
| return (loss, outputs) if return_outputs else loss | ||
|
|
||
| def evaluate(self, eval_dataset=None, ignore_keys=None, metric_key_prefix="eval", **gen_kwargs): | ||
tsinghua-zhang marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
| """ | ||
| Run evaluation and returns metrics. | ||
|
|
||
| The calling script will be responsible for providing a method to compute metrics, as they are task-dependent | ||
| (pass it to the init `compute_metrics` argument). | ||
|
|
||
| You can also subclass and override this method to inject custom behavior. | ||
|
|
||
| Args: | ||
| eval_dataset (`Dataset`, *optional*): | ||
| Pass a dataset if you wish to override `self.eval_dataset`. If it is an [`~datasets.Dataset`], columns | ||
| not accepted by the `model.forward()` method are automatically removed. It must implement the `__len__` | ||
| method. | ||
| ignore_keys (`List[str]`, *optional*): | ||
| A list of keys in the output of your model (if it is a dictionary) that should be ignored when | ||
| gathering predictions. | ||
| metric_key_prefix (`str`, *optional*, defaults to `"eval"`): | ||
| An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named | ||
| "eval_bleu" if the prefix is `"eval"` (default) | ||
| max_length (`int`, *optional*): | ||
| The maximum target length to use when predicting with the generate method. | ||
| num_beams (`int`, *optional*): | ||
| Number of beams for beam search that will be used when predicting with the generate method. 1 means no | ||
| beam search. | ||
| gen_kwargs: | ||
| Additional `generate` specific kwargs. | ||
|
|
||
| Returns: | ||
| A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The | ||
| dictionary also contains the epoch number which comes from the training state. | ||
| """ | ||
|
|
||
| gen_kwargs = gen_kwargs.copy() | ||
| if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None: | ||
| gen_kwargs["max_length"] = self.args.generation_max_length | ||
| gen_kwargs["num_beams"] = ( | ||
| gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.args.generation_num_beams | ||
| ) | ||
| self._gen_kwargs = gen_kwargs | ||
|
|
||
| return super().evaluate(eval_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix) | ||
|
|
||
| def prediction_step( | ||
| self, | ||
| model, | ||
| inputs, | ||
| prediction_loss_only, | ||
| ignore_keys=None, | ||
| ): | ||
| """ | ||
| Perform an evaluation step on `model` using `inputs`. | ||
|
|
||
| Subclass and override to inject custom behavior. | ||
|
|
||
| Args: | ||
| model (`nn.Layer`): | ||
| The model to evaluate. | ||
| inputs (`Dict[str, Union[paddle.Tensor, Any]]`): | ||
| The inputs and targets of the model. | ||
|
|
||
| The dictionary will be unpacked before being fed to the model. Most models expect the targets under the | ||
| argument `labels`. Check your model's documentation for all accepted arguments. | ||
| prediction_loss_only (`bool`): | ||
| Whether or not to return the loss only. | ||
|
|
||
| Return: | ||
| Tuple[Optional[float], Optional[paddle.Tensor], Optional[paddle.Tensor]]: A tuple with the loss, logits and | ||
| labels (each being optional). | ||
| """ | ||
| if not self.args.predict_with_generate or prediction_loss_only: | ||
| return super().prediction_step( | ||
| model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys | ||
| ) | ||
|
|
||
| has_labels = "labels" in inputs | ||
| labels = inputs["labels"] | ||
| # inputs = self._prepare_inputs(inputs) | ||
|
|
||
| gen_kwargs = self._gen_kwargs.copy() | ||
|
|
||
| if "attention_mask" in inputs: | ||
tsinghua-zhang marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
| gen_kwargs["attention_mask"] = inputs.get("attention_mask", None) | ||
| if "global_attention_mask" in inputs: | ||
| gen_kwargs["global_attention_mask"] = inputs.get("global_attention_mask", None) | ||
|
|
||
| generated_tokens = self.model.generate( | ||
| **inputs, | ||
| **gen_kwargs, | ||
| use_cache=True, | ||
| use_fp16_decoding=True, | ||
| repetition_penalty=2.0, | ||
| ) | ||
|
|
||
| # different from hf returns: tuple[Tensor]: It is a tuple contains two elements: ids and scores. | ||
| if isinstance(generated_tokens, tuple): | ||
| generated_tokens = generated_tokens[0] | ||
| # in case the batch is shorter than max length, the output should be padded | ||
| if gen_kwargs.get("max_length") is not None and generated_tokens.shape[-1] < gen_kwargs["max_length"]: | ||
| generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_length"]) | ||
| elif gen_kwargs.get("max_new_tokens") is not None and generated_tokens.shape[-1] < ( | ||
| gen_kwargs["max_new_tokens"] + 1 | ||
| ): | ||
| generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_new_tokens"] + 1) | ||
|
|
||
| with paddle.no_grad(): | ||
| if has_labels: | ||
| with self.autocast_smart_context_manager(): | ||
| loss, outputs = self.compute_loss(model, inputs, return_outputs=True) | ||
| loss = loss.mean().detach() | ||
| else: | ||
| loss = None | ||
|
|
||
| if self.args.prediction_loss_only: | ||
| return (loss, None, None) | ||
|
|
||
| return (loss, generated_tokens, labels) | ||
|
|
||
| def _pad_tensors_to_max_len(self, tensor, max_length): | ||
| if self.tokenizer is not None and hasattr(self.tokenizer, "pad_token_id"): | ||
| # If PAD token is not defined at least EOS token has to be defined | ||
| pad_token_id = ( | ||
| self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id | ||
| ) | ||
| else: | ||
| if self.tokenizer.pad_token_id is not None: | ||
| pad_token_id = self.tokenizer.pad_token_id | ||
| else: | ||
| raise ValueError("Pad_token_id must be set in the configuration of the model, in order to pad tensors") | ||
| # paddle.ones need to support device args. | ||
| padded_tensor = pad_token_id * paddle.ones((tensor.shape[0], max_length), dtype=tensor.dtype) | ||
| padded_tensor[:, : tensor.shape[-1]] = tensor | ||
| return padded_tensor | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.