Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 15 additions & 18 deletions models/recall/word2vec/benchmark/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,24 +74,24 @@ def net(self, inputs, is_infer=False):
size=[self.sparse_feature_number, self.sparse_feature_dim],
param_attr=paddle.ParamAttr(
name='emb',
initializer=paddle.initializer.Uniform(-init_width,
init_width)))
initializer=paddle.nn.initializer.Uniform(-init_width,
init_width)))

true_emb_w = paddle.static.nn.embedding(
input=inputs[1],
is_sparse=True,
size=[self.sparse_feature_number, self.sparse_feature_dim],
param_attr=paddle.ParamAttr(
name='emb_w',
initializer=paddle.initializer.Constant(value=0.0)))
initializer=paddle.nn.initializer.Constant(value=0.0)))

true_emb_b = paddle.static.nn.embedding(
input=inputs[1],
is_sparse=True,
size=[self.sparse_feature_number, 1],
param_attr=paddle.ParamAttr(
name='emb_b',
initializer=paddle.initializer.Constant(value=0.0)))
initializer=paddle.nn.initializer.Constant(value=0.0)))

neg_word_reshape = paddle.reshape(inputs[2], shape=[-1, 1])
neg_word_reshape.stop_gradient = True
Expand All @@ -116,7 +116,7 @@ def net(self, inputs, is_infer=False):
neg_emb_b_vec = paddle.reshape(neg_emb_b, shape=[-1, self.neg_num])

true_logits = paddle.add(paddle.sum(
paddle.multiply(input_emb, true_emb_w), dim=1, keep_dim=True),
paddle.multiply(input_emb, true_emb_w), axis=1, keepdim=True),
true_emb_b)

input_emb_re = paddle.reshape(
Expand All @@ -131,14 +131,15 @@ def net(self, inputs, is_infer=False):
label_ones = paddle.full_like(
true_logits, fill_value=1.0, dtype='float32')
label_zeros = paddle.full_like(
true_logits, fill_value=0.0, dtype='float32')
neg_logits, fill_value=0.0, dtype='float32')

true_logits = paddle.nn.functional.sigmoid(true_logits)
true_xent = paddle.nn.functional.binary_cross_entropy(true_logits,
label_ones)
neg_logits = paddle.nn.functional.sigmoid(neg_logits)
neg_xent = paddle.nn.functional.binary_cross_entropy(neg_logits,
label_zeros)
cost = paddle.add(paddle.sum(true_xent, dim=1),
paddle.sum(neg_xent, dim=1))
cost = paddle.add(true_xent, neg_xent)
avg_cost = paddle.mean(cost)

self.inference_target_var = avg_cost
Expand All @@ -157,24 +158,20 @@ def create_optimizer(self, strategy=None):

# single
optimizer = paddle.optimizer.SGD(
learning_rate=paddle.static.exponential_decay(
learning_rate=lr,
decay_steps=decay_steps,
decay_rate=decay_rate,
staircase=True))
learning_rate=paddle.optimizer.lr.ExponentialDecay(
learning_rate=lr, gamma=decay_rate, verbose=True))

if strategy != None:
sync_mode = self.config.get("runner.sync_mode")
print("sync_mode: {}".format(sync_mode))
# geo
if sync_mode == "geo":
decay_steps = int(decay_steps / fleet.worker_num())
print("decay_steps: {}".format(decay_steps))
optimizer = paddle.optimizer.SGD(
learning_rate=paddle.static.exponential_decay(
learning_rate=lr,
decay_steps=decay_steps,
decay_rate=decay_rate,
staircase=True))
learning_rate=paddle.optimizer.lr.ExponentialDecay(
learning_rate=lr, gamma=decay_rate, verbose=True))
strategy.a_sync_configs["lr_decay_steps"] = decay_steps

# async sync heter
if sync_mode in ["async", "sync", "heter"]:
Expand Down