Skip to content
Open
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions docs/tutorials/recommendation_system/DeepFM.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ DeepFM模型结构如下图所示,完成对稀疏特征的嵌入后,由FM层

![](https://ai-studio-static-online.cdn.bcebos.com/8654648d844b4233b3a05e918dedc9b777cf786af2ba49af9a92fc00cd050ef3)

## 2.FM
## 3.FM

FM(Factorization Machines,因子分解机)最早由Steffen Rendle于2010年在ICDM上提出,它是一种通用的预测方法,在即使数据非常稀疏的情况下,依然能估计出可靠的参数进行预测。与传统的简单线性模型不同的是,因子分解机考虑了特征间的交叉,对所有嵌套变量交互进行建模(类似于SVM中的核函数),因此在推荐系统和计算广告领域关注的点击率CTR(click-through rate)和转化率CVR(conversion rate)两项指标上有着良好的表现。

Expand All @@ -31,7 +31,7 @@ $$

![](https://ai-studio-static-online.cdn.bcebos.com/bda8da10940b43ada3337c03332fe06ad1cd95f7780243888050023be33fc88c)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

目前FM的部分描述比较简单,考虑补充FM的学习过程,FM的优缺点等等


## 3.DNN
## 4.DNN

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

wide&Deep详细说一下,不一定每个人都知道

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

考虑回答一下,为什么选择DNN要跟FM结合,RNN跟FM能够结合吗?分析一下DNN+FM结合的好处

该部分和Wide&Deep模型类似,是简单的前馈网络。在输入特征部分,由于原始特征向量多是高纬度,高度稀疏,连续和类别混合的分域特征,因此将原始的稀疏表示特征映射为稠密的特征向量。

Expand All @@ -51,7 +51,7 @@ DNN深度神经网络层结构如下图所示:

![](https://ai-studio-static-online.cdn.bcebos.com/df8159e1d56646fe868e8a3ed71c6a46f03c716ad1d74f3fae88800231e2f6d8)

## 4.Loss及Auc计算
## 5.Loss及Auc计算

DeepFM模型的损失函数选择Binary_Cross_Entropy(二值交叉熵)函数
$$
Expand All @@ -63,7 +63,7 @@ Auc是Area Under Curve的首字母缩写,这里的Curve指的就是ROC曲线

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

在这里加一节DeepFM和其他模型的比较,比如目前在推荐领域中比较流行的深度模型FNN、PNN、Wide&Deep等

可使用paddle.metric.Auc()进行调用。

## 5.参考文献
## 6.参考文献

[IJCAI 2017]Guo, Huifeng,Tang, Ruiming,Ye, Yunming,Li, Zhenguo,He, Xiuqiang. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction

Expand Down