You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<span id="HuangEtAl2024b">Y.-Y. Huang, P. Y. Fung, S. Y. Hon, and X.-L. Lin, “An efficient preconditioner for evolutionary partial differential equations with θ-method in time discretization,” arXiv:2408.03535v1 [math.NA], 2024 [Online]. Available at: <a href="http://arxiv.org/abs/2408.03535v1" target="_blank">http://arxiv.org/abs/2408.03535v1</a></span>
In this study, the θ-method is used for discretizing a class of evolutionary partial differential equations. Then, we transform the resultant all-at-once linear system and introduce a novel one-sided preconditioner, which can be fast implemented in a parallel-in-time way. By introducing an auxiliary two-sided preconditioned system, we provide theoretical insights into the relationship between the residuals of the generalized minimal residual (GMRES) method when applied to both one-sided and two-sided preconditioned systems. Moreover, we show that the condition number of the two-sided preconditioned matrix is uniformly bounded by a constant that is independent of the matrix size, which in turn implies that the convergence behavior of the GMRES method for the one-sided preconditioned system is guaranteed. Numerical experiments confirm the efficiency and robustness of the proposed preconditioning approach.
0 commit comments