Skip to content

Commit e5efcbb

Browse files
committed
deploy: 5f88e38
1 parent 370a65b commit e5efcbb

File tree

1 file changed

+95
-0
lines changed

1 file changed

+95
-0
lines changed

references/index.html

Lines changed: 95 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -2146,6 +2146,101 @@ <h2 id="year2025" class="year">2025 <span class="count-stat"></span></h2>
21462146
</div>
21472147

21482148

2149+
</div>
2150+
</li>
2151+
<li><div class="bibtex-entry-container">
2152+
<div>
2153+
<div class="col-md-3 col-sm-12 bibtex-ref-meta hidden">
2154+
<div class="row">
2155+
<div class="col-md-12 ref-label label label-default">
2156+
TabeartEtAl2025
2157+
</div>
2158+
</div>
2159+
</div>
2160+
2161+
<div class="bibtex-ref-entry">
2162+
<span id="TabeartEtAl2025">J. M. Tabeart, S. Gürol, J. W. Pearson, and A. T. Weaver, “Block Alpha-Circulant Preconditioners for All-at-Once Diffusion-Based Covariance Operators,” arXiv:2506.03947v2 [math.NA], 2025 [Online]. Available at: <a href="http://arxiv.org/abs/2506.03947v2" target="_blank">http://arxiv.org/abs/2506.03947v2</a></span>
2163+
</div>
2164+
2165+
2166+
<div class="row mt-4">
2167+
<div class="btn-group btn-group-xs btn-group-justified" role="group">
2168+
<div class="btn-group btn-group-xs" role="group">
2169+
2170+
<button class="button" data-toggle="modal" data-target="#modalTabeartEtAl2025Bibtex" aria-expanded="false"
2171+
aria-controls="modalTabeartEtAl2025Bibtex">
2172+
BibTeX
2173+
</button>
2174+
2175+
</div>
2176+
<div class="btn-group btn-group-xs" role="group">
2177+
2178+
<button class="button" data-toggle="modal" data-target="#modalTabeartEtAl2025Abstract" aria-expanded="false"
2179+
aria-controls="modalTabeartEtAl2025Abstract">
2180+
Abstract
2181+
</button>
2182+
2183+
</div>
2184+
</div>
2185+
</div>
2186+
</div>
2187+
2188+
<div class="modal" id="modalTabeartEtAl2025Bibtex" tabindex="-1" role="dialog"
2189+
aria-labelledby="modalTabeartEtAl2025BibtexTitle" aria-hidden="true">
2190+
<div class="modal-background">
2191+
<div class="modal-card">
2192+
<div class="modal-content">
2193+
<header class="modal-card-head">
2194+
<div class="modal-card-head-content">
2195+
<div>
2196+
<p class="modal-card-title" id="modalTabeartEtAl2025BibtexTitle">
2197+
BibTeX entry <code>TabeartEtAl2025</code>
2198+
</p>
2199+
</div>
2200+
<button type="button" class="delete" data-dismiss="modal" aria-label="Close"><span
2201+
aria-hidden="true">&times;</span></button>
2202+
</div>
2203+
</header>
2204+
<section class="modal-card-body">
2205+
<pre class="abstract">@unpublished{TabeartEtAl2025,
2206+
author = {Tabeart, Jemima M. and Gürol, Selime and Pearson, John W. and Weaver, Anthony T.},
2207+
howpublished = {arXiv:2506.03947v2 [math.NA]},
2208+
title = {Block Alpha-Circulant Preconditioners for All-at-Once Diffusion-Based Covariance Operators},
2209+
url = {http://arxiv.org/abs/2506.03947v2},
2210+
year = {2025}
2211+
}
2212+
</pre>
2213+
</section>
2214+
</div>
2215+
</div>
2216+
</div>
2217+
</div>
2218+
2219+
2220+
<div class="modal" id="modalTabeartEtAl2025Abstract" tabindex="-1" role="dialog"
2221+
aria-labelledby="modalTabeartEtAl2025AbstractTitle" aria-hidden="true">
2222+
<div class="modal-background">
2223+
<div class="modal-card">
2224+
<div class="modal-content">
2225+
<header class="modal-card-head">
2226+
<div class="modal-card-head-content">
2227+
<div>
2228+
<p class="modal-card-title" id="modalTabeartEtAl2025AbstractTitle">
2229+
Abstract for BibTeX entry <code>TabeartEtAl2025</code>
2230+
</p>
2231+
</div>
2232+
<button type="button" class="delete" data-dismiss="modal" aria-label="Close"><span
2233+
aria-hidden="true">&times;</span></button>
2234+
</div>
2235+
</header>
2236+
<section class="modal-card-body">
2237+
Covariance matrices are central to data assimilation and inverse methods derived from statistical estimation theory. Previous work has considered the application of an all-at-once diffusion-based representation of a covariance matrix operator in order to exploit inherent parallellism in the underlying problem. In this paper, we provide practical methods to apply block α-circulant preconditioners to the all-at-once system for the case where the main diffusion operation matrix cannot be readily diagonalized using a discrete Fourier transform. Our new framework applies the block α-circulant preconditioner approximately by solving an inner block diagonal problem via a choice of inner iterative approaches. Our first method applies Chebyshev semi-iteration to a symmetric positive definite matrix, shifted by a complex scaling of the identity. We extend theoretical results for Chebyshev semi-iteration in the symmetric positive definite setting, to obtain computable bounds on the asymptotic convergence factor for each of the complex sub-problems. The second approach transforms the complex sub-problem into a (generalized) saddle point system with real coefficients. Numerical experiments reveal that in the case of unlimited computational resources, both methods can match the iteration counts of the ‘best-case’ block α-circulant preconditioner. We also provide a practical adaptation to the nested Chebyshev approach, which improves performance in the case of a limited computational budget. Using an appropriate choice of αour new approaches are robust and efficient in terms of outer iterations and matrix–vector products.
2238+
</section>
2239+
</div>
2240+
</div>
2241+
</div>
2242+
</div>
2243+
21492244
</div>
21502245
</li>
21512246
<li><div class="bibtex-entry-container">

0 commit comments

Comments
 (0)