|
| 1 | +"""Compare the results of TEDANA and AROMA.""" |
| 2 | + |
| 3 | +import os |
| 4 | +from glob import glob |
| 5 | + |
| 6 | +import matplotlib.pyplot as plt |
| 7 | +import pandas as pd |
| 8 | +import seaborn as sns |
| 9 | + |
| 10 | + |
| 11 | +if __name__ == "__main__": |
| 12 | + in_dir = "/cbica/projects/pafin/derivatives/tedana+aroma" |
| 13 | + out_dir = "../figures" |
| 14 | + |
| 15 | + files = sorted( |
| 16 | + glob( |
| 17 | + os.path.join( |
| 18 | + in_dir, |
| 19 | + "sub-*", |
| 20 | + "ses-1", |
| 21 | + "func", |
| 22 | + "*_desc-tedana+aroma_metrics.tsv", |
| 23 | + ) |
| 24 | + ) |
| 25 | + ) |
| 26 | + group_df = pd.DataFrame( |
| 27 | + columns=[ |
| 28 | + "file", |
| 29 | + "subject", |
| 30 | + "denoising", |
| 31 | + "n_components", |
| 32 | + "n_accepted", |
| 33 | + "n_rejected_aroma", |
| 34 | + "n_rejected_tedana", |
| 35 | + "n_rejected_both", |
| 36 | + "varex_accepted", |
| 37 | + "varex_rejected_aroma", |
| 38 | + "varex_rejected_tedana", |
| 39 | + "varex_rejected_both", |
| 40 | + "varex_unmodeled", |
| 41 | + ], |
| 42 | + ) |
| 43 | + for file in files: |
| 44 | + df = pd.read_table(file) |
| 45 | + subject = os.path.basename(file).split("_")[0] |
| 46 | + file_dict = { |
| 47 | + "file": os.path.basename(file), |
| 48 | + "subject": subject, |
| 49 | + "denoising": "NORDIC" if "nordic" in os.path.basename(file) else "None", |
| 50 | + "n_components": df.shape[0], |
| 51 | + "n_accepted": df[df["classification"] == "accepted"].shape[0], |
| 52 | + "varex_accepted": df[df["classification"] == "accepted"][ |
| 53 | + "total_variance_explained" |
| 54 | + ].sum(), |
| 55 | + "varex_unmodeled": 1 - df["total_variance_explained"].sum(), |
| 56 | + } |
| 57 | + |
| 58 | + rejected_df = df.loc[df["classification"] == "rejected"] |
| 59 | + rejected_both_df = rejected_df.loc[ |
| 60 | + rejected_df["classification_tags"].str.contains("TEDANA") |
| 61 | + & rejected_df["classification_tags"].str.contains("AROMA") |
| 62 | + ] |
| 63 | + rejected_aroma_df = rejected_df.loc[ |
| 64 | + rejected_df["classification_tags"].str.contains("AROMA") |
| 65 | + & ~rejected_df["classification_tags"].str.contains("TEDANA") |
| 66 | + ] |
| 67 | + rejected_tedana_df = rejected_df.loc[ |
| 68 | + ~rejected_df["classification_tags"].str.contains("AROMA") |
| 69 | + & rejected_df["classification_tags"].str.contains("TEDANA") |
| 70 | + ] |
| 71 | + |
| 72 | + file_dict["n_rejected_both"] = rejected_both_df.shape[0] |
| 73 | + file_dict["n_rejected_aroma"] = rejected_aroma_df.shape[0] |
| 74 | + file_dict["n_rejected_tedana"] = rejected_tedana_df.shape[0] |
| 75 | + file_dict["varex_rejected_both"] = rejected_both_df["total_variance_explained"].sum() |
| 76 | + file_dict["varex_rejected_aroma"] = rejected_aroma_df["total_variance_explained"].sum() |
| 77 | + file_dict["varex_rejected_tedana"] = rejected_tedana_df["total_variance_explained"].sum() |
| 78 | + |
| 79 | + group_df = group_df.append(file_dict, ignore_index=True) |
| 80 | + |
| 81 | + group_df.to_csv("../data/bold_denoising_metrics.tsv", index=False, sep="\t") |
| 82 | + |
| 83 | + # Boxplot of variance explained, organized as "accepted", "rejected by AROMA", |
| 84 | + # "rejected by TEDANA", "rejected by both", "unmodeled" across runs |
| 85 | + df_varex = group_df.melt( |
| 86 | + id_vars=["subject", "denoising"], |
| 87 | + value_vars=[ |
| 88 | + "varex_accepted", |
| 89 | + "varex_rejected_aroma", |
| 90 | + "varex_rejected_tedana", |
| 91 | + "varex_rejected_both", |
| 92 | + "varex_unmodeled", |
| 93 | + ], |
| 94 | + value_name="Variance Explained", |
| 95 | + var_name="Classification", |
| 96 | + ) |
| 97 | + |
| 98 | + sns.set_theme(style="ticks") |
| 99 | + f, ax = plt.subplots(figsize=(7, 6)) |
| 100 | + sns.boxenplot( |
| 101 | + df_varex, |
| 102 | + x="Variance Explained", |
| 103 | + y="Classification", |
| 104 | + hue="denoising", |
| 105 | + palette="vlag", |
| 106 | + ) |
| 107 | + ax.xaxis.grid(True) |
| 108 | + ax.set_xlim(0, 1) |
| 109 | + ax.set(ylabel="") |
| 110 | + sns.despine(trim=True, left=True) |
| 111 | + f.savefig(os.path.join(out_dir, "bold_denoising_variance_explained.png")) |
| 112 | + plt.close() |
| 113 | + |
| 114 | + # Boxplot of number of components, organized as "accepted", "rejected by AROMA", |
| 115 | + # "rejected by TEDANA", "rejected by both" across runs |
| 116 | + df_ncomps = group_df.melt( |
| 117 | + id_vars=["subject", "denoising"], |
| 118 | + value_vars=[ |
| 119 | + "n_accepted", |
| 120 | + "n_rejected_aroma", |
| 121 | + "n_rejected_tedana", |
| 122 | + "n_rejected_both", |
| 123 | + ], |
| 124 | + value_name="Number of Components", |
| 125 | + var_name="Classification", |
| 126 | + ) |
| 127 | + |
| 128 | + sns.set_theme(style="ticks") |
| 129 | + f, ax = plt.subplots(figsize=(7, 6)) |
| 130 | + sns.boxenplot( |
| 131 | + df_ncomps, |
| 132 | + x="Number of Components", |
| 133 | + y="Classification", |
| 134 | + hue="denoising", |
| 135 | + palette="vlag", |
| 136 | + ) |
| 137 | + ax.xaxis.grid(True) |
| 138 | + ax.set_xlim(0, None) |
| 139 | + ax.set(ylabel="") |
| 140 | + sns.despine(trim=True, left=True) |
| 141 | + f.savefig(os.path.join(out_dir, "bold_denoising_n_components.png")) |
| 142 | + plt.close() |
0 commit comments