This repository accompanies the paper:
“Adversarial learning enables unbiased organism-wide cross-species alignment of single-cell RNA data at scale”
arXiv preprint
This repo contains three Python modules that can be installed separately depending on your use case:
-
pai
API for inference of cell-type embeddings and cell-type labels from scRNA-seq datasets.
Supports.h5ad
formats (downloadable from cellxgene). -
pai_soma_data
A wrapper around TileDB for exploring the scREF atlas, used in our public notebooks. -
ml_benchmarking
Code to run and evaluate ML models on the scREF and scREF-mu benchmarks.
Clone the repository:
git clone https://github.com/PhenomicAI/bascvi.git
cd bascvi
pip install -U phenomic-ai
TODO: update github version to 1.11
pip install -e src/pai
Verify:
from pai.utils.option_choices import tissue_organ_option_choices
from pai.embed import PaiEmbeddings
pip install -e src/pai_soma_data
Verify:
from pai_soma_data import pai_soma_data
pip install -e src/ml_benchmarking
Verify:
import ml_benchmarking.bascvi as bascvi
You can install any combination of these modules depending on your needs.
from pai.utils.option_choices import tissue_organ_option_choices
from pai.embed import PaiEmbeddings
from pai_soma_data import pai_soma_data
import ml_benchmarking.bascvi as bascvi
Everything is released under an MIT license. Please feel free to use it, but cite us as we have cited others.