Skip to content
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 28 additions & 15 deletions src/power_grid_model_ds/_core/model/arrays/base/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
from collections import namedtuple
from copy import copy
from functools import lru_cache
from typing import Any, Iterable, Literal, Type, TypeVar
from typing import Any, Iterable, Literal, Type, TypeVar, overload

import numpy as np
from numpy.typing import ArrayLike, NDArray
Expand Down Expand Up @@ -152,20 +152,33 @@ def __setattr__(self: Self, attr: str, value: object) -> None:
except (AttributeError, ValueError) as error:
raise AttributeError(f"Cannot set attribute {attr} on {self.__class__.__name__}") from error

def __getitem__(self: Self, item):
"""Used by for-loops, slicing [0:3], column-access ['id'], row-access [0], multi-column access.
Note: If a single item is requested, return a named tuple instead of a np.void object.
"""

result = self._data.__getitem__(item)

if isinstance(item, (list, tuple)) and (len(item) == 0 or np.array(item).dtype.type is np.bool_):
return self.__class__(data=result)
if isinstance(item, (str, list, tuple)):
return result
if isinstance(result, np.void):
return self.__class__(data=np.array([result]))
return self.__class__(data=result)
@overload
def __getitem__(
self: Self, item: slice | int | NDArray[np.bool_] | list[bool] | NDArray[np.int_] | list[int]
) -> Self: ...

@overload
def __getitem__(self, item: str | NDArray[np.str_] | list[str]) -> NDArray[Any]: ...

def __getitem__(self, item):
if isinstance(item, slice | int):
new_data = self._data[item]
if new_data.shape == ():
new_data = np.array([new_data])
return self.__class__(data=new_data)
if isinstance(item, str):
return self._data[item]
if (isinstance(item, np.ndarray) and item.size == 0) or (isinstance(item, list | tuple) and len(item) == 0):
return self.__class__(data=self._data[[]])
if isinstance(item, list | np.ndarray):
item_array = np.array(item)
if item_array.dtype == np.bool_ or np.issubdtype(item_array.dtype, np.int_):
return self.__class__(data=self._data[item_array])
if np.issubdtype(item_array.dtype, np.str_):
return self._data[item_array.tolist()]
raise NotImplementedError(
f"FancyArray[{type(item).__name__}] is not supported. Try FancyArray.data[{type(item).__name__}] instead."
)

def __setitem__(self: Self, key, value):
if isinstance(value, FancyArray):
Expand Down
26 changes: 19 additions & 7 deletions tests/unit/model/arrays/test_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,6 @@ def test_getitem_array_one_column(fancy_test_array: FancyTestArray):

def test_getitem_array_multiple_columns(fancy_test_array: FancyTestArray):
columns = ["id", "test_int", "test_float"]
assert fancy_test_array.data[columns].tolist() == fancy_test_array[columns].tolist()
assert_array_equal(fancy_test_array[columns].dtype.names, ("id", "test_int", "test_float"))


Expand All @@ -74,6 +73,17 @@ def test_getitem_unique_multiple_columns(fancy_test_array: FancyTestArray):
assert np.array_equal(np.unique(fancy_test_array[columns]), fancy_test_array[columns])


def test_getitem_array_index(fancy_test_array: FancyTestArray):
assert fancy_test_array[0].data.tolist() == fancy_test_array.data[0:1].tolist()


def test_getitem_array_nested_index(fancy_test_array: FancyTestArray):
nested_array = fancy_test_array[0][0][0][0][0][0]
assert isinstance(nested_array, FancyArray)
assert nested_array.data.shape == (1,)
assert nested_array.data.tolist() == fancy_test_array.data[0:1].tolist()


def test_getitem_array_slice(fancy_test_array: FancyTestArray):
assert fancy_test_array.data[0:2].tolist() == fancy_test_array[0:2].tolist()

Expand All @@ -84,18 +94,20 @@ def test_getitem_with_array_mask(fancy_test_array: FancyTestArray):
assert np.array_equal(fancy_test_array.data[mask], fancy_test_array[mask].data)


def test_getitem_with_tuple_mask(fancy_test_array: FancyTestArray):
mask = (True, False, True)
assert isinstance(fancy_test_array[mask], FancyArray)
assert np.array_equal(fancy_test_array.data[mask], fancy_test_array[mask].data)


def test_getitem_with_list_mask(fancy_test_array: FancyTestArray):
mask = [True, False, True]
assert isinstance(fancy_test_array[mask], FancyArray)
assert np.array_equal(fancy_test_array.data[mask], fancy_test_array[mask].data)


def test_getitem_with_tuple_mask(fancy_test_array: FancyTestArray):
# Numpy gives unexpected results with tuple masks. Therefore, we raise NotImplementedError here.
# e.g: np.array([1,2,3])[(True, False, True)] returns an empty array (array([], shape=(0, 3), dtype=int64)
mask = (True, False, True)
with pytest.raises(NotImplementedError):
fancy_test_array[mask] # type: ignore[call-overload] # noqa


def test_getitem_with_empty_list_mask():
array = FancyTestArray()
mask = []
Expand Down