Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 3 additions & 19 deletions src/power_grid_model_ds/_core/fancypy.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,8 @@

import numpy as np

from power_grid_model_ds._core.utils.misc import array_equal_with_nan

if TYPE_CHECKING:
from power_grid_model_ds._core.model.arrays.base.array import FancyArray

Expand Down Expand Up @@ -44,23 +46,5 @@ def sort(array: "FancyArray", axis=-1, kind=None, order=None) -> "FancyArray":
def array_equal(array1: "FancyArray", array2: "FancyArray", equal_nan: bool = True) -> bool:
"""Return True if two arrays are equal."""
if equal_nan:
return _array_equal_with_nan(array1, array2)
return array_equal_with_nan(array1.data, array2.data)
return np.array_equal(array1.data, array2.data)


def _array_equal_with_nan(array1: "FancyArray", array2: "FancyArray") -> bool:
# np.array_equal does not work with NaN values in structured arrays, so we need to compare column by column.
# related issue: https://github.com/numpy/numpy/issues/21539

if array1.columns != array2.columns:
return False

for column in array1.columns:
column_dtype = array1.dtype[column]
if np.issubdtype(column_dtype, np.str_):
if not np.array_equal(array1[column], array2[column]):
return False
continue
if not np.array_equal(array1[column], array2[column], equal_nan=True):
return False
return True
21 changes: 21 additions & 0 deletions src/power_grid_model_ds/_core/utils/misc.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,3 +39,24 @@ def get_inherited_attrs(cls: Type, *private_attributes):
retrieved_attributes[private_attr] = attr_dict

return retrieved_attributes


def array_equal_with_nan(array1: np.ndarray, array2: np.ndarray) -> bool:
"""Compare two structured arrays for equality, treating NaN values as equal.

np.array_equal does not work with NaN values in structured arrays, so we need to compare column by column.
related issue: https://github.com/numpy/numpy/issues/21539
"""
if array1.dtype.names != array2.dtype.names:
return False

columns: Sequence[str] = array1.dtype.names
for column in columns:
column_dtype = array1.dtype[column]
if np.issubdtype(column_dtype, np.str_):
if not np.array_equal(array1[column], array2[column]):
return False
continue
if not np.array_equal(array1[column], array2[column], equal_nan=True):
return False
return True
Loading