Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 27 additions & 16 deletions .vscode/c_cpp_properties.json
Original file line number Diff line number Diff line change
@@ -1,18 +1,29 @@
{
"configurations": [
{
"name": "macos-gcc-arm64",
"includePath": [
"${workspaceFolder}/**"
],
"compilerPath": "/Users/shubham/bin/gcc",
"cStandard": "${default}",
"cppStandard": "${default}",
"intelliSenseMode": "macos-gcc-arm64",
"compilerArgs": [
""
]
}
],
"version": 4
"configurations": [
{
"name": "macos-gcc-arm64",
"includePath": [
"${workspaceFolder}/**"
],
"compilerPath": "/Users/shubham/bin/gcc",
"cStandard": "${default}",
"cppStandard": "${default}",
"intelliSenseMode": "macos-gcc-arm64",
"compilerArgs": [
""
]
},
{
"name": "Linux",
"includePath": [
"${workspaceFolder}/**"
],
"defines": [],
"compilerPath": "/usr/bin/gcc",
"cStandard": "c17",
"cppStandard": "gnu++17",
"intelliSenseMode": "linux-gcc-x64"
}
],
"version": 4
}
285 changes: 285 additions & 0 deletions CPP/algorithms/arrays/search_in_2D_matrix_1.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,285 @@
/*************************************************************************
* @author: Aryan Sisodiya (@InfinityxR9) (https://github.com/InfinityxR9)
* @category: Problem
* @date: 9 October, 2025
* @name: Search in a 2D Matrix (Implemented as 2D STL Vector) - I
* DIFFICULTY: Medium
*
* LeetCode Reference: https://leetcode.com/problems/search-a-2d-matrix/
* Constrains:
* * m == matrix.length
* * n == matrix[i].length
* * 1 <= m, n <= 100
* * -104 <= matrix[i][j], target <= 104
*
* @details
* You are given a m x n integer matrix with the following two properties:
* * Each row is sorted in non-decreasing order.
* * The first integer of each row is greater than the last integer of the previous row.
*
* Given an integer target, return true if target is in matrix or false otherwise.
*
* You must write a solution in O(log(m * n)) time complexity.
*
* @example
* Input: matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
* Output: true
*
* Input: matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
* Output: false
*
* Approach: Using Binary Search Twice
* * (1) We use binary search first to find out the target lies in which row
* (2) We use binary search second on that row to find out whether target lies in matrix or not.
*
* * The matrix is sorted in a zig-zag fashion.
* * Hence, the Binary Search approach is very well applicable.
*
*
* Time Complexity: O(log (m * n))
* Space Complexity: O(1)
*
*
*/

// Necessary Header Files import
#include <iostream>
#include <vector>
#include <random>
#include <algorithm>

using namespace std;

/**
* Core Algorithm using Binary Search twice to find `target`
* @param matrix The 2D Matrix (with specified properties), in which the `target` is to be searched
* @param target The value to be searched in the `matrix`
* @return Whether the `target` is present in the `matrix` or not
*/
bool searchMatrix(vector<vector<int>> &matrix, int target)
{
// Variables Assignment to find the row
int sRow = 0, eRow = matrix.size() - 1, sMid;

while (sRow <= eRow)
{
sMid = sRow + (eRow - sRow) / 2;

if (matrix[sMid][0] <= target &&
matrix[sMid][matrix[sMid].size() - 1] >= target)
break;
else if (matrix[sMid][0] < target &&
matrix[sMid][matrix[sMid].size() - 1] < target)
sRow = sMid + 1; // Search in right half
else
eRow = sMid - 1; // Search in left half
}

// Variables assignment for Binary Search in so found row
int low = 0, high = matrix[sMid].size() - 1, mid;

while (low <= high)
{
mid = low + (high - low) / 2;

if (matrix[sMid][mid] == target)
return true; // target found!
else if (matrix[sMid][mid] < target)
low = mid + 1;
else
high = mid - 1;
}

return false;
}

/**
* Running Single Test Case
* @param input The 2D Matrix with specified property
* @param target The target value to be searched in the 2D Matrix
* @param expected The expected output
* @param testName Test Case brief Description
*/
void run_test(vector<vector<int>> input, const int target, const bool expected, const string testName)
{
bool ans = searchMatrix(input, target);
if (ans == expected)
{
cout << "[PASS] " << testName << endl;
}
else
{
cout << "[FAIL] " << testName << endl;
cout << " Expected: " << expected;
cout << "\n Got: " << ans;
cout << "\n\n";
}
}

/**
* Utility function to build a strictly-increasing flattened matrix with `rows` x `cols`.
* @param rows Number of rows
* @param cols Number of columns
* @param start The start value `default = 1`
* @param step The start value `default = 1`
* @return The `matrix` so builded
*/
vector<vector<int>> build_increasing_matrix(int rows, int cols, int start = 1, int step = 1)
{
vector<vector<int>> mat(rows, vector<int>());
int val = start;
for (int r = 0; r < rows; ++r)
{
for (int c = 0; c < cols; ++c)
{
mat[r].push_back(val);
val += step;
}
}
return mat;
}

/**
* Utility function to Run all the test cases
*/
void test_cases()
{
// 1-2: Given examples
run_test({{1, 3, 5, 7}, {10, 11, 16, 20}, {23, 30, 34, 60}}, 3, true, "Example Case 1: Found (middle row)");
run_test({{1, 3, 5, 7}, {10, 11, 16, 20}, {23, 30, 34, 60}}, 13, false, "Example Case 2: Not present");

// 3-4: Single element
run_test({{5}}, 5, true, "Single element present");
run_test({{5}}, -5, false, "Single element absent");

// 5-8: Single row
run_test({{1, 3, 5, 7, 9}}, 7, true, "Single row: present (middle)");
run_test({{1, 3, 5, 7, 9}}, 2, false, "Single row: absent (between)");
run_test({{1, 3, 5, 7, 9}}, 1, true, "Single row: first element");
run_test({{1, 3, 5, 7, 9}}, 9, true, "Single row: last element");

// 9-10: Single column
run_test({{1}, {3}, {5}, {7}, {9}}, 5, true, "Single column: middle present");
run_test({{1}, {3}, {5}, {7}, {9}}, 4, false, "Single column: absent between rows");

// 11-13: Multi-row: first, last, between
run_test({{1, 2, 3}, {10, 11, 12}, {20, 21, 22}}, 1, true, "Multi-row: first element");
run_test({{1, 2, 3}, {10, 11, 12}, {20, 21, 22}}, 22, true, "Multi-row: last element");
run_test({{1, 2, 3}, {10, 11, 12}, {20, 21, 22}}, 15, false, "Multi-row: value between rows");

// 14-15: Large gaps
run_test({{1, 2, 3}, {100, 200, 300}, {1000, 2000, 3000}}, 200, true, "Large gap: present");
run_test({{1, 2, 3}, {100, 200, 300}, {1000, 2000, 3000}}, 250, false, "Large gap: absent");

// 16-17: Negatives
run_test({{-10, -5, -2}, {0, 2, 4}, {10, 20, 30}}, -5, true, "Negative number present");
run_test({{-10, -5, -2}, {0, 2, 4}, {10, 20, 30}}, -6, false, "Negative number absent");

// 18-19: Mix negatives and positives
run_test({{-100, -50, -10}, {0, 1, 2}, {10, 20, 30}}, 0, true, "Zero present (row boundary)");
run_test({{-100, -50, -10}, {0, 1, 2}, {10, 20, 30}}, 3, false, "Positive absent across rows");

// 20-21: Outside range
run_test({{5, 10, 15}, {20, 25, 30}}, 1, false, "Target smaller than min");
run_test({{5, 10, 15}, {20, 25, 30}}, 35, false, "Target larger than max");

// 22-23: 2x2
run_test({{1, 2}, {3, 4}}, 3, true, "2x2 present");
run_test({{1, 2}, {3, 4}}, 5, false, "2x2 absent");

// 24-25: 3x1 column
run_test({{2}, {4}, {6}}, 4, true, "3x1 column present");
run_test({{2}, {4}, {6}}, 5, false, "3x1 column absent");

// 26-27: Random small valid matrices
run_test({{1, 4, 7}, {10, 14, 18}, {25, 30, 35}}, 30, true, "Random small: present");
run_test({{1, 4, 7}, {10, 14, 18}, {25, 30, 35}}, 26, false, "Random small: absent");

// 28-29: 4x4
run_test({{1, 2, 3, 4}, {10, 11, 12, 13}, {20, 21, 22, 23}, {30, 31, 32, 33}}, 22, true, "4x4 present");
run_test({{1, 2, 3, 4}, {10, 11, 12, 13}, {20, 21, 22, 23}, {30, 31, 32, 33}}, 19, false, "4x4 absent (gap)");

// 30-32: Boundary extremes (constraints: -10^4 .. 10^4)
run_test({{-10000, -9999, -9998}, {0, 1, 2}, {9998, 9999, 10000}}, -10000, true, "Boundary min present");
run_test({{-10000, -9999, -9998}, {0, 1, 2}, {9998, 9999, 10000}}, 10000, true, "Boundary max present");
run_test({{-10000, -9999, -9998}, {0, 1, 2}, {9998, 9999, 10000}}, 5000, false, "Boundary mid absent");

// 33-34: Larger random-like
run_test({{1, 3, 5, 7, 9, 11}, {20, 22, 24, 26, 28, 30}, {40, 42, 44, 46, 48, 50}}, 28, true, "Larger random: present");
run_test({{1, 3, 5, 7, 9, 11}, {20, 22, 24, 26, 28, 30}, {40, 42, 44, 46, 48, 50}}, 29, false, "Larger random: absent");

// 35-36: Sequential 1..9
run_test({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, 8, true, "Sequential present");
run_test({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, 10, false, "Sequential absent");

// 37-38: Rectangular 2x5
run_test({{1, 2, 3, 4, 5}, {10, 11, 12, 13, 14}}, 12, true, "Rectangular 2x5 present");
run_test({{1, 2, 3, 4, 5}, {10, 11, 12, 13, 14}}, 9, false, "Rectangular 2x5 absent");

// 39-40: Row transitions
run_test({{1, 2, 3}, {10, 11, 12}, {20, 21, 22}}, 10, true, "Row transition: first element of middle row");
run_test({{1, 2, 3}, {10, 11, 12}, {20, 21, 22}}, 12, true, "Row transition: last element of middle row");

// 41-42: Mixed intervals
run_test({{2, 4, 6, 8}, {15, 20, 25, 30}, {100, 200, 300, 400}}, 300, true, "Mixed intervals: present");
run_test({{2, 4, 6, 8}, {15, 20, 25, 30}, {100, 200, 300, 400}}, 99, false, "Mixed intervals: absent");

// 43-44: Repeated values inside rows (allowed) but strict across rows
run_test({{1, 1, 1, 2}, {3, 3, 3, 4}}, 1, true, "Repeateds in row: find repeat value");
run_test({{1, 1, 1, 2}, {3, 3, 3, 4}}, 3, true, "Repeateds in next row: find repeat value");

// 45: All-equal single row
run_test({{2, 2, 2, 2}}, 2, true, "Single row all-equal: present");

// 46: Varying row lengths
run_test({{1, 2}, {3, 4, 5}, {6}}, 5, true, "Varying row lengths: present");

// 47: Absent just after first row
run_test({{1, 2, 3}, {10, 11, 12}}, 4, false, "Absent just after first row (gap)");

// 48: Negative to zero transition with duplicates
run_test({{-3, -2, -1}, {0, 0, 1}}, 0, true, "Negative->Zero with duplicates: present");

// 49: Long single row (n = 100) - generated
{
vector<int> longRow;
longRow.reserve(100);
for (int i = 0; i < 100; ++i)
longRow.push_back(i * 2 + 1); // odd numbers 1..199
run_test({longRow}, 199, true, "Long single row (n=100): last element present");
run_test({longRow}, 100, false, "Long single row (n=100): absent even number");
}

// 50-52: Programmatic, deterministic random-ish matrices (fixed seed)
{
mt19937 rng(42);
for (int t = 0; t < 3; ++t)
{
int rows = 1 + (rng() % 6); // 1..6 rows
int cols = 1 + (rng() % 8); // 1..8 cols
int start = -50 + (rng() % 101); // -50..50
int step = 1 + (rng() % 5); // 1..5
auto M = build_increasing_matrix(rows, cols, start, step);

// pick a random cell to be the target (should be present)
int rr = rng() % rows;
int cc = rng() % cols;
int target_present = M[rr][cc];
run_test(M, target_present, true, "GenMatrix present (deterministic seed)");

// pick a value guaranteed absent: take last element and add 1
int last = M[rows - 1][cols - 1];
int target_absent = last + 1;
run_test(M, target_absent, false, "GenMatrix absent (just above last)");
}
}
}

// Main function
int main()
{
// Running the test cases
test_cases();

return 0;
}
Loading