Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
25 commits
Select commit Hold shift + click to select a range
c499a4d
finetuning wrapper
anuragg1209 Aug 29, 2025
ee4a990
Apply suggestion from @gemini-code-assist[bot]
Aug 29, 2025
daeb82c
Some fixes
anuragg1209 Aug 29, 2025
fb69741
fix the eval config and ensure consistency with context size used du…
anuragg1209 Aug 29, 2025
742781d
Refactor finetune_classifier.py to improve evaluation consistency and…
anuragg1209 Sep 9, 2025
552e127
replace print with logging
anuragg1209 Sep 9, 2025
e7c3838
ruff fix
anuragg1209 Sep 9, 2025
21b2826
Change meta_dataset_size to n_inference_context_samples in examples file
anuragg1209 Sep 10, 2025
b8a3f4c
ensure query labels are a subset of context labels
anuragg1209 Sep 30, 2025
877e65b
-Add gradient clipping and mixed precision training to FinetunedTabPF…
anuragg1209 Nov 11, 2025
c8c0141
Fix non-diversity of training samples during finetuning
anuragg1209 Nov 12, 2025
a5dd225
finetuning wrapper
anuragg1209 Aug 29, 2025
c8a380d
Apply suggestion from @gemini-code-assist[bot]
Aug 29, 2025
98cf50d
Some fixes
anuragg1209 Aug 29, 2025
2b7b61e
fix the eval config and ensure consistency with context size used du…
anuragg1209 Aug 29, 2025
ac8da19
Refactor finetune_classifier.py to improve evaluation consistency and…
anuragg1209 Sep 9, 2025
f8c6351
replace print with logging
anuragg1209 Sep 9, 2025
8f64da2
ruff fix
anuragg1209 Sep 9, 2025
1714364
Change meta_dataset_size to n_inference_context_samples in examples file
anuragg1209 Sep 10, 2025
45310d1
ensure query labels are a subset of context labels
anuragg1209 Sep 30, 2025
6d1957b
-Add gradient clipping and mixed precision training to FinetunedTabPF…
anuragg1209 Nov 11, 2025
871ce0e
Fix non-diversity of training samples during finetuning
anuragg1209 Nov 12, 2025
8a35b95
Ruff fix
anuragg1209 Nov 13, 2025
89eed89
Merge remote-tracking branch 'origin/finetuning_wrapper' into finetun…
anuragg1209 Nov 13, 2025
e1bdbc7
ruff fix
anuragg1209 Nov 13, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -146,3 +146,6 @@ sftp_freiburg.json
*.py.new
commit_messages.txt
CLAUDE.md

# VSCode debugging
vscode_remote_debugging/
78 changes: 78 additions & 0 deletions examples/finetune/finetune_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
import numpy as np
import torch
from sklearn.datasets import fetch_covtype
from sklearn.metrics import log_loss, roc_auc_score
from sklearn.model_selection import train_test_split

from tabpfn import TabPFNClassifier
from tabpfn_extensions.finetune.finetune_classifier import FinetunedTabPFNClassifier

# 1. Load and prepare the data
# We use a small subset for a quick demonstration.
print("--- 1. Loading Data ---")
X_all, y_all = fetch_covtype(return_X_y=True, shuffle=True)
X, y = X_all[:50_000], y_all[:50_000]

# Create a final hold-out test set. This is NOT used during fine-tuning.
X_train, X_test, y_train, y_test = train_test_split(
X,
y,
test_size=0.2,
random_state=42,
stratify=y,
)


# Calculate ROC AUC
def calculate_roc_auc(y_true: np.ndarray, y_pred_proba: np.ndarray) -> float:
if len(np.unique(y_true)) == 2:
return roc_auc_score(y_true, y_pred_proba[:, 1]) # pyright: ignore[reportReturnType]
return roc_auc_score(y_true, y_pred_proba, multi_class="ovr", average="weighted") # pyright: ignore[reportReturnType]


# 2. Initial model evaluation on test set

base_clf = TabPFNClassifier(
device="cuda" if torch.cuda.is_available() else "cpu",
n_estimators=8,
ignore_pretraining_limits=True,
)
base_clf.fit(X_train, y_train)

base_pred_proba = base_clf.predict_proba(X_test)
roc_auc = calculate_roc_auc(y_test, base_pred_proba) # pyright: ignore[reportReturnType, reportArgumentType]
log_loss_score = log_loss(y_test, base_pred_proba)

print(f"📊 Initial Test ROC: {roc_auc:.4f}")
print(f"📊 Initial Test Log Loss: {log_loss_score:.4f}\n")

# 3. Initialize and run fine-tuning
print("--- 2. Initializing and Fitting Model ---\n")

# Instantiate the wrapper with your desired hyperparameters
finetuned_clf = FinetunedTabPFNClassifier(
device="cuda" if torch.cuda.is_available() else "cpu",
epochs=10,
learning_rate=1e-6,
n_inference_context_samples=10_000,
finetune_split_ratio=0.3,
random_state=42,
n_estimators=2,
patience=3,
ignore_pretraining_limits=True,
grad_clip_value=1.0,
)

# 4. Call .fit() to start the fine-tuning process on the training data
finetuned_clf.fit(X_train, y_train) # pyright: ignore[reportArgumentType]
print("\n")

# 5. Evaluate the fine-tuned model
print("--- 3. Evaluating Model on Held-out Test Set ---\n")
y_pred_proba = finetuned_clf.predict_proba(X_test) # pyright: ignore[reportArgumentType]

roc_auc = calculate_roc_auc(y_test, y_pred_proba) # pyright: ignore[reportArgumentType]
loss = log_loss(y_test, y_pred_proba)

print(f"📊 Final Test ROC: {roc_auc:.4f}")
print(f"📊 Final Test Log Loss: {loss:.4f}")
5 changes: 5 additions & 0 deletions src/tabpfn_extensions/finetune/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
"""Fine-tuning utilities for TabPFN models."""

from .finetune_classifier import FinetunedTabPFNClassifier

__all__ = ["FinetunedTabPFNClassifier"]
Loading