Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 43 additions & 0 deletions src/advanced_malware_analysis.py
Original file line number Diff line number Diff line change
Expand Up @@ -138,3 +138,46 @@ def ai_driven_automated_testing(self, exploit_paths):
for exploit_path in exploit_paths:
self.test_exploits_in_sandbox(exploit_path)
return self.analysis_results

def detect_vm_environment(self):
logging.info("Detecting VM environment")
vm_indicators = [
self.check_vm_processes(),
self.check_vm_files(),
self.check_vm_registry_keys()
]
return any(vm_indicators)

def check_vm_processes(self):
# Implement logic to check for VM-related processes
return False

def check_vm_files(self):
# Implement logic to check for VM-related files
return False

def check_vm_registry_keys(self):
# Implement logic to check for VM-related registry keys
return False

def test_detection_techniques(self, malware_path):
logging.info(f"Testing detection techniques on: {malware_path}")
sandbox_detected = self.detect_sandbox_environment()
vm_detected = self.detect_vm_environment()
detection_results = {
"sandbox_detected": sandbox_detected,
"vm_detected": vm_detected
}
return detection_results

def fine_tune_detection_methods(self, malware_path):
logging.info(f"Fine-tuning detection methods for: {malware_path}")
detection_results = self.test_detection_techniques(malware_path)
# Implement logic to fine-tune detection methods based on results
return detection_results

def integrate_detection_techniques(self, malware_path):
logging.info(f"Integrating detection techniques for: {malware_path}")
detection_results = self.fine_tune_detection_methods(malware_path)
self.analysis_results.update(detection_results)
return self.analysis_results
20 changes: 20 additions & 0 deletions src/ai_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -177,6 +177,26 @@ def optimize_exploitation_techniques(self, objective_function, bounds, n_iterati
self.logger.info(f"Optimization completed. Result: {result}")
return result

def train_model(self, training_data, epochs=10):
self.logger.info("Training AI model with relevant datasets...")
self.model.fit(training_data, epochs=epochs)
self.logger.info("Model training completed.")

def evaluate_exploits(self, exploits):
self.logger.info("Evaluating the effectiveness of generated exploits...")
effectiveness_scores = []
for exploit in exploits:
# Implement logic to evaluate the effectiveness of each exploit
effectiveness_score = random.uniform(0, 1) # Placeholder for evaluation logic
effectiveness_scores.append(effectiveness_score)
self.logger.info(f"Effectiveness scores: {effectiveness_scores}")
return effectiveness_scores

def integrate_exploit_generation(self, exploits):
self.logger.info("Integrating the improved exploit generation process into the existing system...")
# Implement logic to integrate the improved exploit generation process
self.logger.info("Exploit generation process integrated successfully.")

if __name__ == "__main__":
model_path = "path/to/pretrained/model.h5"
ai_model = AIDeploymentModel(model_path)
Expand Down
21 changes: 21 additions & 0 deletions src/exploit_payloads.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,3 +86,24 @@ def implement_anti_debugging(self, payload):
def optimize_exploitation_techniques(self, objective_function, bounds, n_iterations=100):
result = minimize(objective_function, bounds, method='L-BFGS-B', options={'maxiter': n_iterations})
return result

def test_optimized_payloads(self, payloads, target):
success_rates = []
for payload in payloads:
success_rate = self.evaluate_payload_success(payload, target)
success_rates.append(success_rate)
return success_rates

def evaluate_payload_success(self, payload, target):
# Implement logic to evaluate the success rate of the payload
success_rate = random.uniform(0, 1) # Placeholder for evaluation logic
return success_rate

def fine_tune_optimization(self, objective_function, bounds, n_iterations=100):
result = self.optimize_exploitation_techniques(objective_function, bounds, n_iterations)
return result

def integrate_optimized_techniques(self, optimized_payloads):
# Implement logic to integrate the optimized exploitation techniques into the existing system
integrated_payloads = [self.add_evasion_techniques(payload) for payload in optimized_payloads]
return integrated_payloads
23 changes: 23 additions & 0 deletions src/session_management.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,26 @@ def escalate_privileges(self, user_id):
logging.info(f"Escalating privileges for user {user_id}")
# Implement privilege escalation logic here

def post_exploitation(self, user_id):
logging.info(f"Performing post-exploitation tasks for user {user_id}")
self.establish_persistence(user_id)
self.escalate_privileges(user_id)
# Add more post-exploitation tasks as needed

def test_post_exploitation(self, user_id):
logging.info(f"Testing post-exploitation tasks for user {user_id}")
self.post_exploitation(user_id)
# Add logic to evaluate the effectiveness of post-exploitation tasks

def fine_tune_post_exploitation(self, user_id):
logging.info(f"Fine-tuning post-exploitation tasks for user {user_id}")
# Add logic to fine-tune post-exploitation methods as necessary

def integrate_post_exploitation(self, user_id):
logging.info(f"Integrating post-exploitation capabilities for user {user_id}")
self.post_exploitation(user_id)
# Add logic to integrate post-exploitation capabilities into the existing system

if __name__ == "__main__":
session_manager = SessionManager()
session_manager.run()
Expand All @@ -82,5 +102,8 @@ def escalate_privileges(self, user_id):
session_manager.start_session('user2')
time.sleep(310)
session_manager.end_session('user1')
session_manager.test_post_exploitation('user2')
session_manager.fine_tune_post_exploitation('user2')
session_manager.integrate_post_exploitation('user2')

# For detailed plans on future implementations, please refer to the `future_implementations_plan.md` file.
22 changes: 15 additions & 7 deletions src/vulnerability_scanner.py
Original file line number Diff line number Diff line change
@@ -1,15 +1,19 @@
import logging
import networkx as nx
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import StandardScaler

class VulnerabilityScanner:
def __init__(self):
self.scan_results = []
self.model = RandomForestClassifier(n_estimators=100)
self.rf_model = RandomForestClassifier(n_estimators=100)
self.gb_model = GradientBoostingClassifier(n_estimators=100)
self.ensemble_model = VotingClassifier(estimators=[('rf', self.rf_model), ('gb', self.gb_model)], voting='soft')
self.data = None
self.labels = None
self.scaler = StandardScaler()

def scan(self, target):
logging.info(f"Scanning target: {target}")
Expand Down Expand Up @@ -88,24 +92,28 @@ def ensure_compatibility(self, existing_data, new_component_data):
}
return compatible_data

def preprocess_data(self, data):
return self.scaler.fit_transform(data)

def load_data(self, data, labels):
self.data = data
self.data = self.preprocess_data(data)
self.labels = labels

def train_model(self):
if self.data is None or self.labels is None:
raise ValueError("Data and labels must be loaded before training the model.")

X_train, X_test, y_train, y_test = train_test_split(self.data, self.labels, test_size=0.2, random_state=42)
self.model.fit(X_train, y_train)
predictions = self.model.predict(X_test)
self.ensemble_model.fit(X_train, y_train)
predictions = self.ensemble_model.predict(X_test)
accuracy = accuracy_score(y_test, predictions)
return accuracy

def predict(self, new_data):
if self.model is None:
if self.ensemble_model is None:
raise ValueError("Model must be trained before making predictions.")

return self.model.predict(new_data)
preprocessed_data = self.preprocess_data(new_data)
return self.ensemble_model.predict(preprocessed_data)

# For detailed plans on future implementations, please refer to the `future_implementations_plan.md` file.
20 changes: 19 additions & 1 deletion src/zero_day_exploits.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import logging
import random
import string

class ZeroDayExploits:
def __init__(self):
Expand Down Expand Up @@ -62,4 +63,21 @@ def implement_anti_debugging(self, exploit_code):
anti_debugging_code = f"{exploit_code} with anti-debugging techniques"
return anti_debugging_code

# For detailed plans on future implementations, please refer to the `future_implementations_plan.md` file.
def test_evasion_techniques(self, exploit_code):
logging.info("Testing evasion techniques")
# Placeholder for testing evasion techniques
effectiveness = random.uniform(0, 1) # Simulate effectiveness score
return effectiveness

def fine_tune_evasion_methods(self, exploit_code):
logging.info("Fine-tuning evasion methods")
# Placeholder for fine-tuning evasion methods
fine_tuned_code = f"{exploit_code} with fine-tuned evasion methods"
return fine_tuned_code

def integrate_evasion_techniques(self, exploit_code):
logging.info("Integrating evasion techniques into the existing system")
integrated_code = self.add_evasion_techniques(exploit_code)
integrated_code = self.implement_code_obfuscation(integrated_code)
integrated_code = self.implement_anti_debugging(integrated_code)
return integrated_code
Loading