This project analyzes price trends in e-commerce platforms using SQL, Python, and Tableau. It is organized for modularity, maintainability, and industrial standards.
/Price_Trends_in_e-Commerce
│
├── data/
│ ├── raw/
│ │ └── ebay_cleaned_dataset.csv
│ ├── processed/
│ │ └── ebay_cleaned_with_extracted_brands.csv
│
├── notebooks/
│ ├── apache_spark.ipynb
│ ├── Data_check.ipynb
│ └── Data_cleaning_code.ipynb
│
├── sql/
│ ├── ingestion/
│ │ ├── create_tables_2.sql
│ │ ├── ingest_data_1.sql
│ │ ├── ingest_data_each_table_100k.sql
│ │ ├── ingest_data_each_table_3.sql
│ │ └── insert_new_data.sql
│ ├── cleaning/
│ │ ├── data_table_check_v2.sql
│ │ └── data_warehouse_validation.sql
│ ├── schema/
│ │ └── data_warehouse_schema_v2.sql
│ ├── performance/
│ │ └── performance_tuning_2.sql
│ ├── procedures/
│ │ └── stored_procedures.sql
│ ├── dynamic_pricing/
│ │ ├── dynamic_pricing_model_v2.sql
│ │ ├── dynamic_pricing_query_4_v2.sql
│ │ ├── dynamic_pricing_query_5_v2.sql
│ │ └── dynamic_query_delta_report_suggestion_v2.sql
│
├── dashboard/
│ └── E-commerce-dashboard.py
│
├── README.md
- Data: Raw and processed datasets for analysis.
- Notebooks: Data cleaning, validation, and scalable processing (Spark).
- SQL: Scripts for ingestion, cleaning, schema, performance tuning, procedures, and dynamic pricing analysis.
- Dashboard: Plotly Dash for visualization.
- Load and clean data using notebooks.
- Ingest and validate data using SQL scripts.
- Analyze price trends and dynamic pricing with advanced SQL queries.
- Visualize results in Plotly dashboard.
- All code and data are organized for clarity and maintainability.
- Only the latest versions of scripts are retained.
- Update paths in notebooks and scripts if you move files.