Skip to content

Comprehensive workflow for analyzing price trends in e-commerce platforms using SQL, Python, and Tableau. Includes data engineering, warehousing, dynamic pricing, and BI visualization.

Notifications You must be signed in to change notification settings

Pulkit12dhingra/ecommerce-pricing-insights

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Price Trends in e-Commerce

Blog Post

Project Overview

This project analyzes price trends in e-commerce platforms using SQL, Python, and Tableau. It is organized for modularity, maintainability, and industrial standards.

Directory Structure

/Price_Trends_in_e-Commerce
│
├── data/
│   ├── raw/
│   │   └── ebay_cleaned_dataset.csv
│   ├── processed/
│   │   └── ebay_cleaned_with_extracted_brands.csv
│
├── notebooks/
│   ├── apache_spark.ipynb
│   ├── Data_check.ipynb
│   └── Data_cleaning_code.ipynb
│
├── sql/
│   ├── ingestion/
│   │   ├── create_tables_2.sql
│   │   ├── ingest_data_1.sql
│   │   ├── ingest_data_each_table_100k.sql
│   │   ├── ingest_data_each_table_3.sql
│   │   └── insert_new_data.sql
│   ├── cleaning/
│   │   ├── data_table_check_v2.sql
│   │   └── data_warehouse_validation.sql
│   ├── schema/
│   │   └── data_warehouse_schema_v2.sql
│   ├── performance/
│   │   └── performance_tuning_2.sql
│   ├── procedures/
│   │   └── stored_procedures.sql
│   ├── dynamic_pricing/
│   │   ├── dynamic_pricing_model_v2.sql
│   │   ├── dynamic_pricing_query_4_v2.sql
│   │   ├── dynamic_pricing_query_5_v2.sql
│   │   └── dynamic_query_delta_report_suggestion_v2.sql
│
├── dashboard/
│   └── E-commerce-dashboard.py
│
├── README.md

Workflow

  • Data: Raw and processed datasets for analysis.
  • Notebooks: Data cleaning, validation, and scalable processing (Spark).
  • SQL: Scripts for ingestion, cleaning, schema, performance tuning, procedures, and dynamic pricing analysis.
  • Dashboard: Plotly Dash for visualization.

Usage

  1. Load and clean data using notebooks.
  2. Ingest and validate data using SQL scripts.
  3. Analyze price trends and dynamic pricing with advanced SQL queries.
  4. Visualize results in Plotly dashboard.

Notes

  • All code and data are organized for clarity and maintainability.
  • Only the latest versions of scripts are retained.
  • Update paths in notebooks and scripts if you move files.

About

Comprehensive workflow for analyzing price trends in e-commerce platforms using SQL, Python, and Tableau. Includes data engineering, warehousing, dynamic pricing, and BI visualization.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published