Skip to content

QSOLKCB/QSOLAI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 

Repository files navigation

QSOLAI Quantum-Sourced Optimization Logic — AI Kernel

A QSOL-IMC Research Framework by Trent Slade

Overview

QSOLAI is the core AI kernel of the QSOL-IMC ecosystem — a modular, deterministic, minimal-dependency framework for exploring:

Quantum Error Correction (QEC)

Unified Field Theory (UFT) prototypes

Qutrit encoders

Spectral algebraics & audio DSP

Sonification templates

Pattern-logic, memetics, and information vortices

This project is designed for researchers, tinkerers, artists, theorists, and scientists who want fast iteration, reproducible runs, and clean architecture without heavy frameworks or bloated dependencies.

Small is beautiful. Fast is holy. Deterministic by default.

Features Core Architecture

Modular structure: encoder/, runner/, sonifier/, analysis/.

Single-seed deterministic execution.

Lightweight dependency footprint.

CLI interface for experiments and sonification runs.

Clean JSON/YAML configuration workflow.

Quantum + DSP + Memetics

Qutrit encoder with upcoming unit tests.

Quantum-inspired logic mapping (QSOL signatures).

Sonification module for audio-based data exploration.

Research templates for UFT/TFT integration.

Memetic logic tools (pattern detection, embedding prep).

Reproducibility

Each run generates:

metadata.json

Seed logs

Audio/visual outputs (if enabled)

Experiment snapshots

Repository Structure QSOLAI/ ├── encoder/ # Qutrit encoder, transformations, unit tests (in progress) ├── runner/ # Deterministic run engine, CLI entrypoint ├── sonifier/ # Audio DSP tools, templates, spectral algebraics ├── analysis/ # Logs, metadata exporters, summaries ├── config/ # experiment.yml / config.yml templates ├── assets/ # diagrams, architecture images ├── tests/ # pytest unit tests ├── README.md # You are here └── requirements.txt # Minimal Python deps

Installation Prerequisites

Python 3.11+

ffmpeg (required for sonification output)

Git

Clone & Setup git clone https://github.com/QSOLKCB/QSOLAI.git cd QSOLAI

python -m venv venv source venv/bin/activate # macOS/Linux

or: venv\Scripts\activate # Windows

pip install --upgrade pip pip install -r requirements.txt

Quick Start

  1. Configure an Experiment

Edit config/config.yml or use the provided template:

seed: 42 mode: run sonification: true output_dir: results/ template: default qutrit_encoder: true

  1. Run the System python runner/runner.py --config config/config.yml

  2. View Outputs

After running, you’ll find:

results/sonification.wav — audio output

results/log.txt — full deterministic log

results/metadata.json — seed, versioning, module info

results/data.npz — encoded arrays, model outputs (if enabled)

Deterministic Execution

QSOLAI uses explicit seeds at all stages:

seed: 42

This ensures:

identical output across machines

reproducibility for scientific workflows

deterministic sonification

repeatable QEC/QSOL logic routines

All modules must respect this seed constraint. (Contributors: don’t introduce nondeterminism without a clear switch.)

Modules Encoder

Qutrit encoding

Tensor transformations

Basis cycling

(Upcoming) Full unit tests for deterministic mapping

Runner

Main orchestrator

Loads config

Applies global seed

Manages module order

Handles logging + reproducibility

Sonifier

Audio-DSP pipeline

Spectral algebraics tools

Standardized sonification templates

Generates .wav or .flac output

Optional spectral visualizations

Analysis

Metadata export

Result summaries

Run comparisons

Seed verification utilities

Dependencies

Minimal, clean Python stack:

numpy

scipy

librosa (if audio enabled)

soundfile

pyyaml

pytest (dev)

System requirement:

ffmpeg

Roadmap (v1 → v2)

Complete qutrit encoder test suite

Add deterministic “v1 runner” finalization

Standardize sonification templates

Integrate UFT/TFT experimental modules

Metadata indexing for multi-run comparison

CI pipeline with reproducibility checks

Optional Rust backend for ultra-minimal builds

Contributing

PRs are welcome — but respect the following:

No bloat. Every dependency must justify itself.

Determinism first. All randomness must use the global seed.

Modular code. No dumping everything into runner.py.

Readable logic > clever magic. Future you should understand current you.

License

MIT License. See LICENSE for full text.

Citation

When referencing this repository in academic or research work:

Slade, T. (2025). QSOLAI: Quantum-Sourced Optimization Logic AI Kernel.
QSOL-IMC Research Group. GitHub: https://github.com/QSOLKCB/QSOLAI
DOI: (Zenodo DOI pending)

Acknowledgements

This project is part of the growing QSOL-IMC universe, including:

QEC — Quantum Error Correction Framework

UFT — Unified Field Theory

Spectral Algebraics

Dark-Country Industrial Sonification Series

QSOL Synth, LOSTSOUND, QNToy

AI-assisted development supported through iterative research dialogue with ChatGPT.

About

The Resonance Protocol: A Signal-Based Model for High-Fidelity Human–AI Collaboration

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published