Skip to content

Commit 4b4ac13

Browse files
committed
remove njit from cass_koopmans_1
1 parent 564e7d3 commit 4b4ac13

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

lectures/cass_koopmans_1.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -912,7 +912,7 @@ $$ (eq:tildeC)
912912
A positive fixed point $C = \tilde C(K)$ exists only if $f\left(K\right)+\left(1-\delta\right)K-f^{\prime-1}\left(\frac{1}{\beta}-\left(1-\delta\right)\right)>0$
913913
914914
```{code-cell} ipython3
915-
@njit
915+
@jit
916916
def C_tilde(K, pp):
917917
918918
return pp.f(K) + (1 - pp.δ) * K - pp.f_prime_inv(1 / pp.β - 1 + pp.δ)
@@ -931,11 +931,11 @@ K = \tilde K(C)
931931
$$ (eq:tildeK)
932932
933933
```{code-cell} ipython3
934-
@njit
934+
@jit
935935
def K_diff(K, C, pp):
936936
return pp.f(K) - pp.δ * K - C
937937
938-
@njit
938+
@jit
939939
def K_tilde(C, pp):
940940
941941
res = brentq(K_diff, 1e-6, 100, args=(C, pp))
@@ -951,7 +951,7 @@ It is thus the intersection of the two curves $\tilde{C}$ and $\tilde{K}$ that w
951951
We can compute $K_s$ by solving the equation $K_s = \tilde{K}\left(\tilde{C}\left(K_s\right)\right)$
952952
953953
```{code-cell} ipython3
954-
@njit
954+
@jit
955955
def K_tilde_diff(K, pp):
956956
957957
K_out = K_tilde(C_tilde(K, pp), pp)

0 commit comments

Comments
 (0)