22from numba .experimental import jitclass
33
44opt_growth_data = [
5- ('α' , float64 ), # Production parameter
6- ('β' , float64 ), # Discount factor
7- ('μ' , float64 ), # Shock location parameter
8- ('γ' , float64 ), # Preference parameter
9- ('s' , float64 ), # Shock scale parameter
10- ('grid' , float64 [:]), # Grid (array)
11- ('shocks' , float64 [:]) # Shock draws (array)
5+ ('α' , float64 ), # 生产参数
6+ ('β' , float64 ), # 折现因子
7+ ('μ' , float64 ), # 冲击的均值参数
8+ ('γ' , float64 ), # 偏好参数
9+ ('s' , float64 ), # 冲击的尺度参数
10+ ('grid' , float64 [:]), # 网格(数组)
11+ ('shocks' , float64 [:]) # 冲击样本(数组)
1212]
1313
1414@jitclass (opt_growth_data )
@@ -27,29 +27,29 @@ def __init__(self,
2727
2828 self .α , self .β , self .γ , self .μ , self .s = α , β , γ , μ , s
2929
30- # Set up grid
30+ # 设置网格
3131 self .grid = np .linspace (1e-5 , grid_max , grid_size )
3232
33- # Store shocks (with a seed, so results are reproducible)
33+ # 存储冲击(设置随机种子以确保结果可重复)
3434 np .random .seed (seed )
3535 self .shocks = np .exp (μ + s * np .random .randn (shock_size ))
3636
37-
3837 def f (self , k ):
39- "The production function. "
38+ "生产函数 "
4039 return k ** self .α
4140
4241 def u (self , c ):
43- "The utility function. "
42+ "效用函数 "
4443 return c ** (1 - self .γ ) / (1 - self .γ )
4544
4645 def f_prime (self , k ):
47- "Derivative of f. "
46+ "生产函数的一阶导数 "
4847 return self .α * (k ** (self .α - 1 ))
4948
5049 def u_prime (self , c ):
51- "Derivative of u. "
50+ "效用函数的一阶导数 "
5251 return c ** (- self .γ )
5352
54- def u_prime_inv (c ):
53+ def u_prime_inv (self , c ):
54+ "效用函数一阶导数的反函数"
5555 return c ** (- 1 / self .γ )
0 commit comments